Tải bản đầy đủ (.pdf) (7 trang)

Đề thi KSCL lớp 12 Toán học Nguyễn Viết Xuân, Vĩnh Phúc 2019 lần 3 - Mã đề 305 - Học Toàn Tập

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (714.44 KB, 7 trang )

(1)

SỞ GD & ĐT VĨNH PHÚC
TRƯỜNG THPT NGUYỄN VIẾT


XUÂN


ĐỀ THI KHẢO SÁT CHẤT LƯỢNG LẦN 3
NĂM HỌC 2018 - 2019


MƠN: Tốn 12


Thời gian làm bài: 90 phút không kể thời gian giao đề;
(50 câu trắc nghiệm)


(Thí sinh không được sử dụng tài liệu) Mã đề thi
305
Họ và tên:... SBD: ...


Câu 1: Một tổ có 6 học sinh nam và 9 học sinh nữ. Hỏi có bao nhiêu cách chọn 6 học sinh đi lao động,
trong đó 2 học sinh nam?


A. 2 4


9. 6


C C . B. 2 4


6. 9


C C . C. 2 4


6 9



CC . D. 2 4


6.A9
A .
Câu 2: Mặt cầu ngoại tiếp hình chóp tứ giác đều có tất cả các cạnh bằng 2a thì có bán kính là:


A. a. B. 3


2


a . C. a 2 . D. 3


2


a
.
Câu 3: Cho hàm sốyf x( ) có bảng biến thiên như sau


Giá trị cực tiểu của hàm số là


A. 0. B. 1. C.  2. D. 3.


Câu 4: Tính lim 22 3


2 3 1


n
I



n n





  .


A. I 0. B. I  . C. I  . D. I 1.


Câu 5: Cho đường thẳng : 1


2


x t


d


y t


 

 


 . Điểm nào sau đây không nằm trên đường thẳng d ?
A.

1;4

. B.

 

1;0 . C. 1;1


2


 
 



 . D.

 

1;2 .
Câu 6: Cho log 62a. Khi đó giá trị của log 183 được tính theo a là:


A. a. B. 2 1


1


a
a




 . C. 2a3 . D. 1


a
a .


Câu 7: Trong không gian Oxyz, cho vec tơ AB

3; 5;6

, biết điểm A

0;6;2

. Tìm tọa độ điểm B.
A. B

3;11; 4

. B. B

3;1;8

. C. 3 1; ;4


2 2


B


 . D. B

3; 11;4

.


x   2 0 2 


y  0  0  0 



y





1


3




1



(2)

Câu 8: Đường cong trong hình bên là đồ thị của một hàm số nào
dưới đây?


A. 1


1


x
y


x





 . B.



2 1


2 2


x
y


x





 . C. 1


x
y


x





 . D.


1
1


x
y



x





 .
Câu 9: Biết

 



9


0


37


f x dx


 



9


0


16


g x dx


. Tính tích phân

 

 



9



0


2 3


I

f xg x dx


A. I 122. B. I 74. C. I 53. D. I 48.


Câu 10: Phương trình log2xlog (2 x 1) 1có tập nghiệm là:


A.

 

1 . B.

 

1;3 . C.

1;2

. D.

 

2 .


Câu 11: Tiệm cận ngang, tiệm cận đứng của đồ thị hàm số 1


2x 2


x
y 


 là
A. Tiệm cận ngang 1


2


y , tiệm cận đứng x 1
B. Tiệm cận ngang 1


2


y  , tiệm cận đứng x 1.


C. Tiệm cận ngang x 1, tiệm cận đứng 1


2


y
D. Tiệm cận ngang 1


2


y , tiệm cận đứng x1.


Câu 12: Bất phương trình 2x24x32 có tập nghiệm là S

 

a b; , khi đó b a là?


A. 8 . B. 2 . C. 4 . D. 6 .


Câu 13: Cho hàm số yf x( )có bảng biến thiên như sau:


Số nghiệm của phương trình 2 ( ) 3 0f x   là


A. 1. B. 3 . C. 4 . D. 2 .


Câu 14: Cho hình chóp có diện tích mặt đáy là 3a2và chiều cao bằng 2a. Tính thể tích khối chóp bằng
A. 3


a . B. 3


6a . C. 3


2a . D. 3a3.



Câu 15: Cho hàm số f x

 

liên tục trên đoạn

1;3

và có đồ
thị như hình vẽ bên. Gọi Mm lần lượt là giá trị lớn nhất
và nhỏ nhất của hàm số đã cho trên

1;3

. Giá trị của


M m bằng ?


x  3 0 3 


y  0  0  0 


y





3


2


3





O x


y



(3)

A. 1. B. 5 . C. 4 . D. 0 .



Câu 16: Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y x 33x2 và trục hoành.


A. 27


4


S   . B. 27


4


S  . C. 29


4


S  . D. 13


2


S  .
Câu 17: Cho hình hộp ABCD A B C D. ' ' ' ' (như hình vẽ).


A' B'


C'


B


D C


A



D'


Chọn mệnh đề đúng?


A. Phép tịnh tiến theo DC biến điểm A' thành điểm B' .
B. Phép tịnh tiến theo AC biến điểm A' thành điểm D'.
C. Phép tịnh tiến theoAB' biến điểm A' thành điểm C'.
D. Phép tịnh tiến theoAA' biến điểm A' thành điểm B'.


Câu 18: Tính

 



b


a


I

f x dx, biếtF x

 

là một nguyên hàm của f x

 

F a

 

 2, F b

 

3 .


A. I 1. B. I 5. C. I  1. D. I  5.


Câu 19: Tập xác định của hàm sốy

x31

4 là:


A. . B. \ 1

 

C.

1; 

. D.

1; 

.
Câu 20: Phát biểu nào sau đây là đúng ?


A.

sin x.dxcosx C . B.

sin x.dx cosx C .


C.

sin x.dxsinx C . D.

sin x.dx sinx C .


Câu 21: Một mặt cầu có bán kính R 3. Diện tích mặt cầu bằng



A. 12 3R2. B. 4R2. C. 12R2. D. 8R2.


Câu 22: Cho a0,a1, biểu thức Dloga3acó giá trị bằng bao nhiêu?


A. 3. B. 3 . C. 1


3


 . D. 1


3.


Câu 23: Cho hình chóp tam giác S ABC. có đáyABC là tam giác vuông tạiA ,AB a , AC2a, cạnh
bên SA vng góc với mặt đáy và SA a . Tính thể tích V của khối chópS ABC. .


A.


3
2


a


V  . B. V a3 . C. 3


4


a


V  . D.



3
3


a
V  .
Câu 24: Tìm tất cả các giá trị thực của tham số m để phương trình sinx m 1 có nghiệm?



(4)

Câu 25: Cho hàm số yf x( ) có đồ thị như hình vẽ. Hàm
số yf x( ) đồng biến trên khoảng nào dưới đây?


A. (0;2). B. (2;). C. (;0). D. ( 2;2) .


Câu 26: Họ nguyên hàm của hàm số f x

 

xcosx
A.


2
cosx
2


x


C


 . B. xsinx-cosx C . C. xsinx+cosxC. D.


2


sinx
2



x


C


 .


Câu 27: Cho hàm sốyf x( ) có đạo hàm f x'( )x x( 5)(x10)5,  x . Số điểm cực trị của hàm số


đã cho là


A. 3 . B. 1. C. 2 . D. 7 .


Câu 28: Cho hàm số yf x( ) có bảng biến
thiên như hình bên. Đồ thị hàm số yf x( )có
tổng số bao nhiêu đường tiệm cận đứng và tiệm
cận ngang ?


A. 0 . B. 2 . C. 1. D. 3 .


Câu 29: Cho hệ trục tọa độ vng góc

O i j k; ; ;

, chọn khẳng định sai trong các khẳng định sau
A. u

x y z; ;

mu mxi my j mzk   . B. i2  j2 k2 1.


C. M x y z

; ;

OM  xi y j zk . D. i j.  j k k i.  . 1.


Câu 30: Cho hàm số yf x

 

liên tục trên đoạn

 

a b; . Diện tích hình phẳng giới hạn bởi đường
cong yf x

 

, trục hoành và các đường thẳng x a x b ;  là


A.

 




a


b


f x dx


. B.

 



b


a


f x dx


. C.

 



b


a


f x dx


. D.

 



b


a


f x dx



.


Câu 31: Trong không gian với hệ tọa độ Oxyz , cho ba điểm A

0; 1; 1

, B

3; 0; 1

, C

0; 21; 19


mặt cầu

  

S : x1

 

2 y1

 

2 z 1

2 1. M a b c

; ;

là điểm thuộc mặt cầu

 

S sao cho biểu thức


2 2 2


3 2


TMAMBMC đạt giá trị nhỏ nhất. Tính tổng a b c  .
A. a b c  12. B. 12


5



(5)

Đồ thị hàm số yf x

 

2m có 5 điểm cực trị khi và chỉ khi
A. m

4;11 .

B. 2;11


2


m  


  . C. m3 . D.


11
2;


2


m 



 


Câu 33: Cho hình chóp S ABCD. có đáy ABCD là hình bình hành. Trong không gian lấy điểmS thỏa
mãn SS 2BC. Gọi V1 là phần thể tích chung của hai khối chóp S ABCD. và .S ABCD . Gọi V2 là thể
tích khối chóp S ABCD. . Tỉ số 1


2


V


V bằng


A. 1


2. B.


5


9. C.


1


9. D.


4
9.


Câu 34: Cho hàm số f x

 

có bảng biến thiên như sau:


Hàm số

f x

 

33.

f x

 

2nghịch biến trên khoảng nào dưới đây?


A.

 

2;3 . B.

 

1;2 . C.

 

3;4 . D.

;1

.
Câu 35: Cho các số thực a b, thỏa mãn: log2a2log3b2log5

a b

. Tính P a 2b


A. P 2 . B. P 23 . C. P23 . D. P25 .


Câu 36: Ba bạn A, B, C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn

1;16 . Xác suất để


ba số được viết ra có tổng chia hết cho 3 bằng .


A. 77


512. B.


1457


4096. C.


683


2048. D.


19
56.


Câu 37: Cho lăng trụ đứng ABC A B C.    có AB1, AC2, AA 2 5 và BAC1200. Gọi M
trung điểm của CC. Khoảng cách từ A đến mặt phẳng

A BM



A. 21


5 . B. 5. C.



21


7 . D.


5
3 .



(6)

A.
3
3
a
. B.
3
5
8
a


. C.


3
5


24


a


. D.


3



8


a
.


Câu 39: Biết



2
1
2
0
2


ln 3 ln 2
2


x


I dx a b c


x




   





với a b c, , là các số nguyên. TínhS a b c  


A. S 1. B. S 2 . C. S  1. D. S0.


Câu 40: Tổng tất cả các nghiệm của phương trình

1



1
5


log 6x36x  2 bằng


A. log 5 16  . B. 6 . C. log 5 . 6 D. 1.


Câu 41: Từ một tấm tơn hình chữ nhật kích thước 50cm100cm người ta gị thành mặt xung quanh của
một hình trụ có chiều cao 50 cm. Tính thể tích của khối trụ đó.


A. 15000 3


3 cm . B.


3


12000


cm


 . C.


3



125000


cm


 . D.


3


48000


cm


 .
Câu 42: Cho hàm số yf x

 

có đồ thị yf x

 

như hình vẽ.


Xét hàm số

 

 

1 3 3 2 3 2018


3 4 2


g xf xxxx . Mệnh đề nào
dưới đây đúng?


A.

 



 

 

 


3;1
3 1
min
2

g g
g x

 


B.

 



 3;1

 



ming x g 3




  .


C.

 



 3;1

 



ming x g 1




  . D.

 



 3;1

 



ming x g 1





 .


Câu 43: Cho hình lập phươngABCD EFGH. . Gọi  là góc giữa đường thẳng AG và mặt phẳng


EBCH

. Chọn khẳng định đúng trong các khẳng định sau:


A. tan 2 . B. tan 2


3


 . C. 0


45


 . D. 0


30


  .
Câu 44: Đạo hàm của hàm sốylog

x2 x 1

bằng


A. 2 1


1


x  x B.

2



2 1



1 ln10


x


x x




  . C. 2


ln10
1


x  x D.

2



2 1


1 ln 2


x


x x



 


Câu 45: Cho hai mặt phẳng

 

P

 

Q song song với nhau và cắt một mặt cầu tâm O bán kính R tạo
thành hai đường trịn có cùng bán kính. Xét hình nón có đỉnh trùng với tâm của một trong hai đường tròn
và đáy trùng với đường tròn còn lại. Tính khoảng cách giữa

 

P

 

Q để diện tích xung quanh hình
nón đó là lớn nhất.


O x
y
1
1
3
3


 1


2



(7)

A. 2 3


3


R


. B. 3


2


R


. C. R 2 . D. R .


Câu 46: Trong không gian Oxyz, cho các điểmA

2; 1;6

,B

  3; 1; 4

,C

5; 1;0

. Bán kính đường
trịn nội tiếp tam giác ABC


A. 2 5



25 . B.


5


2 . C. 5. D. 5.


Câu 47: Cho hàm sốyf x

 

. Có bảng xét dấu đạo hàm như sau:


Bất phương trình f x

 

ex22xm đúng  x

 

0;2 khi chỉ khi


A. mf

 

0 1. B. m f

 

1 1


e


  . C. mf

 

0 1 . D. m f

 

1 1


e


  .


Câu 48: Tìm tất cả các giá trị thực của tham số m sao cho bất phương trình:


2 2 2 2 2 0


m xx  m x x  có nghiệm x0;1 3


A. 2


3



m . B. m0 . C. 2


3


m . D. m 1 .
Câu 49: Cho hàm số f x

 

mx4nx3 px2qx r


m n p q r R, , , , 

. Hàm số y f x'

 

có đồ thị như hình vẽ
bên. Tập nghiệm của phương trình f x

 

r có số phần tử là


A. 2 . B. 1. C. 3. D. 4 .


Câu 50: Ông Nam vay ngân hàng 800 triệu đồng theo hình thức trả góp hàng tháng trong 60 tháng. Lãi
suất ngân hàng cố định 0,5% trên tháng. Mỗi tháng ông Nam phải trả (lần đầu tiên phải trả là 1 tháng sau
khi vay) số tiền là số tiền vay ban đầu chia cho 60 và số tiền lãi sinh ra từ số tiền gốc còn nợ ngân hàng.
Tổng số tiền lãi mà ông Nam phải trả trong tồn bộ q trình trả nợ là bao nhiêu?


A. 122.000.000 đồng. B. 126.066.666 đồng. C. 135.500.000 đồng. D. 118.000.000 đồng.
---





×