Tải bản đầy đủ (.pdf) (7 trang)

Đề thi thử THPT quốc gia

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (512.58 KB, 7 trang )

(1)

SỞ GD & ĐT BẮC NINH


TRƯỜNG THPT CHUYÊN BẮC NINH
(Đề gồm 50 câu trắc nghiệm / 05 trang)


ĐỀ KHẢO SÁT LẦN 1 NĂM HỌC 2017-2018


Mơn: Tốn 12


Thời gian làm bài: 90 phút


Mã đề thi 101
(Thí sinh khơng được sử dụng tài liệu)


Họ, tên thí sinh:... SBD: ...


Câu 1: Cho chuyển động xác định bởi phương trình S  t3 3t29t, trong đó t được tính bằng giây và S


được tính bằng mét. Tính vận tốc tại thời điểm gia tốc triệt tiêu.


A. 12 m/s B. 21 m/s C. 12 m/s2 D. 12 m/s


Câu 2: Hàm số y2x41 đồng biến trên khoảng nào?


A.

0;

B. 1;


2





 



  C.


1
;


2


 


 


  D.

; 0



Câu 3: Hình đa diện nào sau đây có tâm đối xứng?


A. Hình hộp chữ nhật B. Hình tứ diện đều


C. Hình chóp tứ giác đều D. Hình lăng trụ tam giác


Câu 4: Cho hai hàm số ( ) 1
2
f x


x


 và


2
( )



2
x


g x  . Gọi d1, d2 lần lượt là tiếp tuyến của mỗi đồ thị hàm
số f(x) , g(x) đã cho tại giao điểm của chúng. Hỏi góc giữa hai tiếp tuyến trên bằng bao nhiêu?


A. 600 B. 450 C. 300 D. 900


Câu 5: Hình hộp đứng đáy là hình thoi có bao nhiêu mặt phẳng đối xứng?


A. 1 B. 3 C. 4 D. 2


Câu 6: Cho hàm số yf x( )x36x29x3

 

C .Tồn tại hai tiếp tuyến của (C) phân biệt và có cùng
hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox, Oy tương
ứng tại AB sao cho OA2017.OB. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán?


A. 0 B. 1 C. 2 D. 3


Câu 7: Tìm tất cả các số tự nhiên k sao cho C14k,C14k1,C14k2 theo thứ tự lập thành một cấp số cộng.
A. k 4, k5 B. k3,k 9 C. k 7, k8 D. k 4, k 8
Câu 8: Trong các dãy số sau, dãy số nào là cấp số cộng?


A. unn2 B. ( 1)


n
n


u   n C.


3



n n


n


uD. un 2n


Câu 9: Cho hàm số


2


2 1 1


khi 0


( )


2 2 khi = 0


x


x


f x x


m m x


 






 





. Tìm tất cả các giá trị của tham số m để hàm số


liên tục tại x0.


A. m2 B. m3 C. m0 D. m1


Câu 10: Tính thể tích của khối tứ diện đều có cạnh bằng 2.
A. 4 2


3 B. 2 C.


2 2


3 D. 2 2


Câu 11: Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số 4 2


2 1


y x mx có ba


điểm cực trị tạo thành tam giác vuông cân.



A. 3


3


m B. m 1 C. 3


1 3


m ;m D. 3


3 1



(2)

Câu 12: Gieo ngẫu nhiên 2 con súc sắc cân đối đồng chất. Tính xác suất để tổng số chấm xuất hiện trên 2
con súc sắc đó bằng 7.


A. 7


12 B.
1
6 C.
1
2 D.
1
3.
Câu 13: Cho hàm số 



x
y



x có đồ thị (C). Tìm tọa độ giao điểm I của hai đường tiệm cận của đồ thị (C).


A. I 2;2 . B. I 2; 2 . C. I 2;1 . D. I 2;1 .


Câu 14: Cho khối lăng trụ ABC A B C.    có thể tích bằng 2017. Tính thể tích khối đa diện ABCB C .
A. 2017


2 B.
4034
3 C.
6051
4 D.
2017
4


Câu 15: Tìm tất cả các giá trị thực của than số m để phương trình 5cosx m sinx m 1 có nghiệm.


A. m12 B. m 13 C. m24 D. m24


Câu 16: Cho hàm số f x( ) thỏa mãn f x'( ) 2 5sinxf(0) 10 . Mệnh đề nào dưới đây đúng?
A. f x( )2x5cosx5 B. f x( )2x5cosx3


C. f x( )2x5cosx10 D. f x( )2x5cosx15
Câu 17: Cho


0


2 1 1


lim


x
x
I
x

 


 và


2
1
2
lim
1
x
x x
J
x

 


 . Tính IJ .


A. 3 B. 5 C. 4 D. 2


Câu 18: Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng

 

d1 : 2x3y 1 0 và

 

d2 :x  y 2 0. Có bao nhiêu phép tịnh tiến biến d1 thành d2 .


A. Vô số B. 0 C. 1 D. 4



Câu 19: Trong các dãy số sau, dãy số nào là dãy số tăng?
A.


3


n n


n


uB. 3


1
n
n
u
n


C.
2
2
n


unn D. ( 1)


3


n



n n


u  


Câu 20: Một tổ có 5 học sinh nam và 6 học sinh nữ. Giáo viên chọn ngẫu nhiên 3 học sinh để làm trực
nhật. Tính xác suất để 3 học sinh được chọn có cả nam và nữ.


A. 3


8 B.
24
25 C.
9
11 D.
3
4
Câu 21: Giải phương trình sinxcosx 2 sin 5x.


A. 18 2


9 3
  


  

 
 
x k
x k



B. 12 2


24 3
  


  

 
 
x k
x k


C. 16 2


8 3
  


  

 
 
x k
x k


D. 4 2


6 3


  


  

 
 
x k
x k


Câu 22: Tìm hệ số của 5


x trong khai triển thành đa thức của (2x3)8.


A. C85.2 .35 3 B. C83.2 .35 3 C. C83.2 .33 5 D. C85.2 .32 6


Câu 23: Tính đạo hàm của hàm số 2


( ) sin 2 cos 3


f xxx.


A. f x'( )2cos 2x3sin 6x B. f x'( )2cos 2x3sin 6x
C. f x'( )2cos 2x2sin 3x D. f x'( )cos 2x2sin 3x
Câu 24: Xét hàm số y 4 3 x trên đoạn

1;1

. Mệnh đề nào sau đây đúng?


A. Hàm số có cực trị trên khoảng

1;1

.


B. Hàm số khơng có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn

 

1;1 .
C. Hàm số đồng biến trên đoạn

 

1;1 .



(3)

Câu 25: Cho hình thoi ABCD tâm O (như hình vẽ). Trong các mệnh đề sau, mệnh đề nào là mệnh đề
đúng?


O


D


C
B


A


A. Phép quay tâm O, góc
2




biến tam giác OBC thành tam giác OCD.
B. Phép vị tự tâm O, tỷ số k 1 biến tam giác ABD thành tam giác CDB.
C. Phép tịnh tiến theo vec tơ AD biến tam giác ABD thành tam giác DCB.
D. Phép vị tự tâm O, tỷ số k1 biến tam giác OBC thành tam giác ODA.
Câu 26: Cho cấp số nhân ( ); u1 3, 1


2


n


uq . Hỏi số 3



256là số hạng thứ mấy?


A. 9 B. 10 C. 8 D. 11


Câu 27: Đồ thị của hàm số yx33x29x1 có hai điểm cực trị AB. Điểm nào dưới đây thuộc


đường thẳng AB ?


A. M

1; 10

B. N

1;10

C. P

 

1;0 D. Q

0; 1



Câu 28: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật,ABa AD,  a 2, đường thẳng SA


vng góc với mặt phẳng (ABCD); góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 600. Tính theo


a thể tích khối chóp S.ABCD.


A. 3 2a3 B. 6a3 C. 3a3 D. 2a3


Câu 29: Cho hình chóp S ABC. đáy ABC là tam giác cân tại C, cạnh bên SA vng góc với đáy. Gọi


,


H K lần lượt là trung điểm của ABSB. Trong các mệnh đề sau, mệnh đề nào là mệnh đề sai?


A.CH SB B.CH AK C.AK BC D.HK HC


Câu 30: Phát biểu nào sau đây là đúng?


A. Hàm số yf x

 

đạt cực trị tại x0 khi và chỉ khi x0 là nghiệm của đạo hàm.
B. Nếu f '

 

x0 0 và f"

 

x0 0 thì hàm số đạt cực đại tại x0.


C. Nếu f '

 

x0 0 và f "

 

x0 0 thì x0 khơng phải là cực trị của hàm số yf x

 

đã cho.


D. Nếu f '

 

x đổi dấu khi x qua điểm x0f x

 

liên tục tại x0 thì hàm số yf x

 

đạt cực trị tại
điểm x0.


Câu 31: Tìm tất cả các giá trị thực của tham số m để đường thẳng ymx m 1 cắt đồ thị của hàm số
3 2


3 2


yxx  x tại ba điểm phân biệt A, B, C sao cho ABBC.


A. m 

;0

 

 4;

. B. m .


C. 5; .


4
m  


  D. m  

2;



Câu 32: Tìm tập giá trị T của hàm số yx 3 5x



(4)

Tìm tất cả các giá trị thực của tham số m để phương trình f

 

x 2m1 có bốn nghiệm phân biệt?
A.   1 m 0


2 B.   m


1



0


2 C.    m


1
1


2 D.    m


1
1


2
Câu 34: Phương trình sinxcosx1 có bao nhiêu nghiệm trên khoảng (0; ) ?


A. 1 B. 0 C. 2 D. 3 .


Câu 35: Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn
phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?


A. y x4 x2 1.
B. y x3 3x 1.
C. y x3 3x 1.
D. y x2 x 1.


x
y


O



Câu 36: Cho tam giác ABC cân tại đỉnh A. Biết độ dài cạnh đáy BC, đường cao AH và cạnh bên AB theo
thứ tự lập thành cấp số nhân với công bội q. Giá trị của q2 bằng:


A. 2 2
2




B. 2 2
2




C. 2 1
2

D.
2 1
2


Câu 37: Tìm số tất cả tự nhiên n thỏa mãn


0 1 2 100


2 3


...



1.2 2.3 3.4 ( 1)( 2) ( 1)( 2)


n


n n n n


C C C C n


n n n n


 


    


   


A. n100 B. n98 C. n99 D. n101


Câu 38: Giải phương trình sin 2 cos4 sin4


2 2


x x


x  .


A.
2
6 3
2


2
x k
x k
 

  


  



B. 4 2


2
x k
x k
 

  


  



C. 3


3
2
2
x k


x k


  


  



D. 12 2


3
4
x k
x k
 

  


  



Câu 39: Cho hình lăng trụ ABC A B C.    có đáy là tam giác đều cạnh a. Hình chiếu vng góc của điểm


A lên mặt phẳng

ABC

trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng


AA và BC bằng 3
4



a


. Tính theo a thể tích V của khối lăng trụ ABC A B C.   .


A.


3
3
6
a


V  . B.


3
3
12
a


V  . C.


3
3
3
a


V  . D.


3
3
24


a


V  .


Câu 40: Cho khối tứ diện ABCD có thể tích V. Gọi M, N, P, Q lần lượt là trọng tâm của các tam giác


ABC, ABD, ACD, BCD. Tính theo V thể tích của khối tứ diện MNPQ.
A.


27
V


B. 4
27


V



(5)

A. 2 B. 3 C. 0 D. 5


Câu 42: Hình lăng trụ ABC A B C.    có đáy ABC là tam giác vuông tại A AB; a AC; 2a. Hình
chiếu vng góc của A trên

ABC

nằm trên đường thẳng BC. Tính theo a khoảng cách từ điểm A đến
mặt phẳng

A BC

.


A. 2
3


a


B. 2 5
5



a


C. 3
2
a


D. a


Câu 43: Cho hình chóp S.ABCD đáy ABCD là hình thoi tâm O, đường thẳng SO vng góc với mặt


phẳng (ABCD). Biết 6


3
a


ABSBa SO,  . Tìm số đo của góc giữa hai mặt phẳng (SAB) và (SAD).


A. 300 B. 450 C. 600 D. 900


Câu 44: Tìm tất cả các giá trị của tham số m để đường thẳng y  2x m cắt đồ thị (H) của hàm số


2 3


2
x
y


x






 tại hai điểm , A B phân biệt sao cho


2018 2018


1 2


Pkk đạt giá trị nhỏ nhất (với k k1, 2 là hệ số
góc của tiếp tuyến tại , A B của đồ thị (H).


A. m 3 B. m 2 C. m3 D. m2


Câu 45: Giám đốc một nhà hát A đang phân vân trong việc xác định mức giá vé xem các chương trình
được trình chiếu trong nhà hát. Việc này rất quan trọng, nó sẽ quyết định nhà hát thu được bao nhiêu lợi
nhuận từ các buổi trình chiếu. Theo những cuốn sổ ghi chép của mình, Ơng ta xác định rằng: nếu giá vé
vào cửa là 20 USD/người thì trung bình có 1000 người đến xem. Nhưng nếu tăng thêm 1 USD/người thì
sẽ mất 100 khách hàng hoặc giảm đi 1 USD/người thì sẽ có thêm 100 khách hàng trong số trung bình.
Biết rằng, trung bình, mỗi khách hàng còn đem lại 2 USD lợi nhuận cho nhà hát trong các dịch vụ đi kèm.
Hãy giúp Giám đốc nhà hát này xác định xem cần tính giá vé vào cửa là bao nhiêu để nhập là lớn nhất?


A. 21 USD/người B. 18 USD/người C. 14 USD/người D. 16 USD/người


Câu 46: Cho khối lăng trụ ABC A B C.   có thể tích bằng 2018. Gọi M là trung điểm AA; N, P lần lượt là
các điểm nằm trên các cạnh BB CC', ' sao cho BN2B N CP , 3C P . Tính thể tích khối đa diện


ABCMNP.


A. 4036



3 B.


32288


27 C.


40360


27 D.


23207
18


Câu 47: Cho hình chóp S ABCD. có đáy ABCD là hình thang cân, AD2,AB2,BC2,CD2a. Hai
mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Gọi M N, lần lượt là trung điểm của


SBCD. Tính cosin góc giữa MN

SAC

, biết thể tích khối chóp S.ABCD bằng
3


3
4


a


.
A. 310


20 B.



3 5


10 C.


3 310


20 D.


5
10


Câu 48: Trong bốn hàm số: (1) ysin 2 ; (2) x ycos 4 ; (3) x ytan 2 ; (4) x ycot 3x có mấy hàm số
tuần hoàn với chu kỳ


2




?


A. 0 B. 2 C. 3 D. 1


Câu 49: Trong không gian, cho các mệnh đề sau, mệnh đề nào là mệnh đề đúng?


A. Một đường thẳng vng góc với một trong hai đường thẳng vng góc thì song song với đường
thẳng cịn lại


B. Hai đường thẳng cùng vng góc với một đường thẳng thứ ba thì song song với nhau.


C. Một đường thẳng vng góc với một trong hai đường thẳng song song thì vng góc với đường


thẳng cịn lại.



(6)

Câu 50: Cho hình lăng trụ tam giác đều có cạnh đáy bằng 2a và có các mặt bên đều là hình vng. Tính
theo a thể tích khối lăng trụ đã cho.


A.
3


2 2


3
a


B. 3


3a 2 C.


3


2 2


4
a


D. 2a3 3
---



(7)

BẢNG ĐÁP ÁN


1 A 26 A



2 A 27 A


3 A 28 D


4 D 29 C


5 B 30 D


6 C 31 D


7 D 32 C


8 D 33 C


9 D 34 A


10 C 35 C


11 B 36 C


12 B 37 B


13 D 38 A


14 B 39 B


15 A 40 A


16 A 41 A



17 C 42 B


18 B 43 D


19 C 44 B


20 C 45 C


21 C 46 D


22 B 47 A


23 A 48 B


24 D 49 C





Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×