Tải bản đầy đủ (.pdf) (25 trang)

Đề luyện thi THPT năm 2020 đề số 2

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (935.69 KB, 25 trang )

(1)

ĐỀ SỐ 02


KỲ THI THPT QUỐC GIA 2020
Bài thi: TOÁN 12


Thời gian làm bài: 90 phút, không kể thời gian phát đề
Câu 1. Tập nghiệm S của bất phương trình

2



ln x 1 ln 2x4 0


A. S

3;

. B. S  

1;3

.


C. S   

2; 1

 

 3;

. D. S   

; 1

 

 3;

.
Câu 2. Hàm số f x

 

cos2

x21

có đạo hàm là


A. f

 

x  2 sin 2x

x21

. B. f

 

x 2 cos

x21

.
C. f

 

x 2 sin 2x

x21

. D. f

 

x  4 sin 2x

x21

.


Câu 3. Trong không gian Oxyz, mặt phẳng đi qua ba điểm A(0; 2; 0) , B(0; 0;3) và C( 1; 0; 0) có
phương trình là


A. 3x6y2z 6 0. B. 6x3y2z 6 0.
C. 2x6y3z 6 0. D. 6x3y2z 6 0.


Câu 4. Cho khối trụ có độ dài đường sinh bằng 2a, diện tích xung quanh mặt trụ Sxq 4

a2. Thể tích
khối trụ bằng


A.2 3


3

a . B.



3


a


. C. 2

a3. D. 8

a3.


Câu 5. Họ nguyên hàm của hàm số ( ) 3 1
2


x


f x


x


 
A. 3 12


ln 3 2


x


C
x


  . B. 3 1ln


ln 3 2


x



x C


  . C. 3 ln 3 12
2


x


C
x


  . D. 3 ln 3 1ln
2


x


x C


  .


Câu 6. Cho hàm số f x

 

có đồ thị như hình bên. Số nghiệm thực của phương trình f2

 

x  1 0 bằng


A.3. B.6. C.4. D.1.


Câu 7. Cho hình chóp .S ABCDcó đáy ABCD là hình chữ nhật ABa BC, 2 ,a SAaSA vng
góc với mặt phẳng đáy. Cơ sin của góc giữa đường thẳng SD và mặt phẳng

SAC

bằng


A.2.


5 B.



21
.


5 C.


3
.


2 D.


1
.
2


Câu 8. Số các số tự nhiên gồm ba chữ số khác nhau lập từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 là


Trang 1


THUVIENTOAN.NET



(2)

A. C83. B. P8. C. A83. D. P3.
Câu 9. Cho a là số thực dương tùy ý khi đó


5
2
log


2 2



a


 


 


 


bằng:


A. 2


3
5 log


2


a . B. 2


2
5 log


3


a . C. 2


3
5 log


2



a . D. 2


3
5log
2 a.


Câu 10. Cho số phức z thỏa mãn



3


1 3


1


i
z


i



 . Mô đun của số phức w z i z. bằng


A. 11. B. 8. C. 8 2. D. 0.


Câu 11. Trong không gian Oxyz, cho hai điểm A

1; 1; 3 

B

2;1; 1

. Độ dài đoạn thẳng AB
bằng


A. 17. B. 5 . C. 13. D. 3 .



Câu 12. Cho hàm số


2


2
.


2 1 3


x
y


x



 


Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị đã cho




A. 1. B. 4. C. 3 . D. 2.


Câu 13. Đường cong trong hình vẽ sau là đồ thị của hàm số nào dưới đây ?


A. y x42x23. B. yx42x2. C. yx42x23. D. y x42x2.


Câu 14. Cho hàm số f x

 

có đạo hàm f

 

x

x21

x3

 

2 x2

2019, x . Số điểm cực tiểu của

hàm số đã cho là:


A. 5 . B.2. C. 3 . D. 4.


Câu 15. Cho các số thực a b, thỏa mãn đẳng thức 2a 3

3b2i i

 4 3ivới i là đơn vị ảo. Giá trị
biểu thức P2a b bằng


A. 0 . B.2. C. 3


2


. D.2.


Câu 16. Cho phần vật thế  được giới hạn bởi hai mặt phẳng

 

P

 

Q vng góc với trục Ox tại
0


x , x3. Cắt phần vật thể  bởi mặt phẳng vng góc với trục Ox tại điểm có hồnh độ
bằng x

0x3

ta được thiết diện là hình chữ nhật có kích thước lần lượt là x và 3x.
Thể tích phần vật thể  bằng



(3)

A. 27
4



. B. 12 3


5





. C. 12 3


5 . D.


27
4 .


Câu 17. Cho khối chóp tam giác .S ABC có.. và


2


a


SA , đáy là tam giác ABC vuông cân tại A,


ABACa. Thể tích khối chóp đã cho bằng


A.
3
4


a


. B.


3
12


a



. C.


3
2


a


. D.


3
6


a
.


Câu 18. Trong không gian Oxyz, khoảng cách giữa đường thẳng : 1 1


1 4 1


x y z


d     và mặt phẳng


( ) : 2P x y 2z 9 0 bằng:


A. 10


3 . B. 4. C. 2. D.



4
3.
Câu 19. Thể tích của khối cầu

 

S có bán kính 3


2


R bằng


A. 3


4




. B. 3


2




. C. 4 3

. D. .


Câu 20. Tập nghiệm của phương trình

 



2 2 1


2 xx 4 là


A.

1; 3

. B.

 

1 . C.

1;3

. D.

 

3 .



Câu 21. Trong không gian Oxyz, cho điểm I

3; 1; 4

và mặt cầu

  

2 2

2


1 : 1 2 1


S x yz  .
Phương trình của mặt cầu

 

S có tâm I và tiếp xúc ngồi với mặt cầu

 

S1


A.

x3

2

y1

2

z4

2 4. B.

x3

2

y1

2

z4

2 16.
C.

x3

2

y1

2

z4

2 4. D.

x3

2

y1

2

z4

2 2.


Câu 22. Gọi M m lần lượt là giá trị lớn nhất, nhỏ nhất của hàm số

 

sin4 cos2 1cos 2
4


f xxxx.


Giá trị Mm bằng


A. 1


16. B.


9


16. C.


1


2. D.


11


16.


Câu 23. Đặt alog 5,2 blog 35 . Mệnh đề nào dưới đây đúng ?


A. log 4548 2
4


a b


ab





 . B. 48


2
log 45


4


a ab


ab





 .



C. log 4548 1 2
4


b
a b





 . D. 48


2 4


log 45
4


a ab


ab





 .


Câu 24. Cho hàm số yf x

 

có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào
dưới đây



(4)

A.

1;1

. B.

1; 

. C.

0;1 .

D.

2;1

.



Câu 25. Trong không gian Oxyz, cho đường thẳng

 

d vng góc với mặt phẳng

 

P : 2x3z 5 0.
Một vectơ chỉ phương của đường thẳng

 

d


A.u 

2; 3;5

. B. u 

2; 0; 3

. C. u 

2; 3; 0

. D. u 

2; 0;3

.
Câu 26. Tổng các nghiệm thực của phương trình log 7 10

x

 1 x


A.7. B. 1. C. 2 . D. 10.


Câu 27. Cho cấp số nhân

 

un . Biết tổng ba số hạng đầu bằng 4, tổng của số hạng thứ tư, thứ năm và thứ
sáu bằng32. Số hạng tổng quát của cấp số nhân là


A. 4.

 

2
5


n
n


u    . B.

 



1
4. 2


5


n
n


u






  . C.

 



1
4. 2


3


n
n


u





 . D. 4.

 

2


3


n
n


u   .


Câu 28. Cho 3

 



1 f x dx4



, khi đó 1



0 f 2x1 dx


bằng:


A. 8. B. 2. C. 1


2. D.


3
2.
Câu 29. Họ nguyên hàm của hàm số f x

 

2x

3ex



A. 3x22xex2exC. B. 6x22xex2exC.


C. 3x2ex2xexC. D. 3x2 2xex2exC.


Câu 30. Cho hàm số yx4mx21 với mlà số thực âm. Số điểm cực trị của hàm số đã cho là


A. 2. B. 3 . C. 1. D. 0 .


Câu 31. Gọi A, B, C lần lượt là điểm biểu diễn hình học của các số phức z1  1 2i, z2   1 i


3 3 4


z   i. Điểm G trọng tâm ABC là điểm biểu diễn của số phức nào sau đây?


A. z 1 i B.z 3 3i. C.z 1 2i. D.z 1 i.



Câu 32. Cho hình chóp .S ABCD, đáy là hình vng cạnh bằng a. Gọi M là trung điểm SA. Biết hình
chiếu vng góc của S trùng với trọng tâm G của tam giác ACD, góc giữa đường thẳng SB


và mặt phẳng đáy bằng 600. Khoảng cách từ M đến mặt phẳng

SBC

bằng


A. 42


14


a


. B. 3 42


14


a


. C. 42


21


a


. D. 2 42


21


a


.




(5)

Câu 33. Cho khối lăng trụ tam giác ABC A B C. ' ' ', đáy là tam giác ABC đều cạnh a. Gọi M là trung
điểm AC. Biết tam giác A MB cân tại A và nằm trong mặt phẳng vng góc với mặt phẳng


ABC

. Góc giữa A B với mặt phẳng

ABC

là 30. Thể tích khối lăng trụ đã cho là:
A.


3


3
16


a


. B.


3


3
48


a


. C.


3


3
24



a


. D.


3


3
8


a


.


Câu 34. Một trang trại chăn nuôi lợn dự định mua thức ăn dự trữ, theo tính tốn của chủ trang trại, nếu
lượng thức ăn tiêu thụ mỗi ngày là như nhau và bằng ngày đầu tiên thì số lượng thức ăn đã mua
để dự trữ sẽ ăn hết sau 120 ngày. Nhưng thực tế, mức tiêu thụ thức ăn ngày sau tăng 3% so với
ngày trước. Hỏi thực tế lượng thức ăn dự trữ đó sẽ hết trong khoảng bao nhiêu ngày?.


A.50 ngày. B.53 ngày. C.52 ngày. D.51 ngày.


Câu 35. Cho


2
2
0


d ln 3


2 4



x


x a b


xx   


với a, b là các số thực. Giá trị của a23b2 bằng


A. 7


27 . B.


1


2. C.


5


18. D.


35
144.


Câu 36. Một con quạ bị khát nước, nó tìm thấy một bình đựng nước hình trụ, do mức nước trong bình chỉ
cịn lại hai phần ba so với thể tích của bình nên nó khơng thể thị đầu vào uống nước được. Nó
liền gắp 3 viên bi ve hình cầu để sẵn bên cạnh bỏ vào bình thì mực nước dâng lên vừa đủ đầy
bình và nó có thể uống nước. Biết 3 viên bi ve hình cầu đều có bán kính là 1cm và chiều cao của
bình hình trụ gấp 4 lần đường kính của mỗi viên bi. Diện tích xung quanh của bình hình trụ nói
trên gần với số nào nhất trong các số sau ?



A. 65,8cm2. B.61, 6cm2. C.66, 6cm2. D.62,3cm2.


Câu 37. Lô gô gắn tại Shoroom của một hãng ơ tơ là một hình trịn như hình vẽ bên. Phần tô đậm nằm
gữa Parabol đỉnh I và đường gấp khúc AJB được giát bạc với chi phí 10 triệu đồng /m2 phần


còn lại phủ sơn với chi phí 2 triệu đồng/m2. Biết AB2 ,m IAIB 5m và 13


2


JAJBm.
Hỏi tổng số tiền giát bạc và phủ sơn của lơ gơ nói trên gần với số nào nhất trong các số sau:



(6)

A. 19 250 000đồng. B. 19 050 000 đồng. C. 19 150 000đồng. D. 19 500 000đồng.
Câu 38. Cho hàm số yf

 

x liên tục trên  và có đồ thị như hình vẽ sau


Hàm số yf x

22x3

nghịch biến trên khoảng nào dưới đây ?


A.

 ; 1

. B.

  1;

. C.

2; 0

. D.

2; 1

.


Câu 39. Trong không gian Oxyz, cho hai đường thẳng chéo nhau

 

1 : 1 1 2


3 2 2


x y z


d     


 ,

 

2



4 4 3


:


2 2 1


x y z


d     


 . Phương trình đường vng góc chung của hai đường thẳng


   

d1 , d2 là


A.

 

1 : 4 1


2 1 2


x y z


d    


 . B.


2 2 2


6 3 2


xyz



 


 .


C. 2 2 2


2 1 2


xyz


 


 . D.


4 1


2 1 2


xyz


 


  .


Câu 40. Bạn Nam làm bài thi thử THPT Quốc gia mơn Tốn có 50 câu, mỗi câu có 4 đáp án khác nhau,
mỗi câu đúng được 0, 2 điểm, mỗi câu làm sai hoặc không làm không được điểm cũng không bị
trừ điểm. Bạn Nam đã làm đúng được 40 câu còn 10 câu còn lại bạn chọn ngẫu nhiên mỗi câu
một đáp án. Xác suất để bạn Nam được trên 8, 5điểm gần với số nào nhất trong các số sau?


A. 0,53. B. 0, 47. C. 0, 25. D.0,99.




(7)

BẢNG ĐÁP ÁN


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20


C A D C B C D C A C A D B B A C B C B C


21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


C B B C B B C B A B D A A D C B C D C A


HƯỚNG DẪN GIẢI
Câu 1. Tập nghiệm S của bất phương trình ln

x21

ln 2

x4

0


A. S

3;

. B. S  

1;3

.


C. S   

2; 1

 

 3;

. D. S   

; 1

 

 3;

.
Lời giải


Chọn C


Tập xác định D  

2;

. Ta có


2

2


ln x 1 ln 2x4 0x 2x 3 0


1
3



x
x


 

 




.


Kết hợp với điều kiện suy ra tập nghiệm của bất phương trình S   

2; 1

 

 3;


Câu 2. Hàm số

 

2

2



cos 1


f xx  có đạo hàm là


A. f

 

x  2 sin 2x

x21

. B. f

 

x 2 cos

x21

.
C. f

 

x 2 sin 2x

x21

. D. f

 

x  4 sin 2x

x21

.


Lời giải
Chọn D


 

2

2

2

2

2



2.cos 1 cos 1 2.cos 1 2 sin 1 2 sin 2 1


fxxx   x   x x    x x.



Câu 3. Trong không gian Oxyz, mặt phẳng đi qua ba điểm A(0; 2; 0) , B(0; 0;3) và C( 1; 0; 0) có
phương trình là


A. 3x6y2z 6 0. B. 6x3y2z 6 0.
C. 2x6y3z 6 0. D. 6x3y2z 6 0.


Lời giải
Chọn D


Phương trình mặt phẳng theo đoạn chắn: 1 6 3 2 6 0


1 2 3


x y z


x y z


       


 


Câu 4. Cho khối trụ có độ dài đường sinh bằng 2a, diện tích xung quanh mặt trụ Sxq 4

a2. Thể tích
khối trụ bằng



(8)

A.2 3


3

a . B.


3



a


. C. 2

a3. D. 8

a3.


Lời giải
Chọn C


Khối trụ có độ dài đường sinh l2a, bán kính đáy R, diện tích xung quanh mặt trụ Sxq 4

a2


2
2

Rl 4

a


   Ra. Thể tích khối trụ bằng Vh R

2 2a3

.


Câu 5. Họ nguyên hàm của hàm số ( ) 3 1
2


x


f x


x


 
A. 3 12


ln 3 2


x



C
x


  . B. 3 1ln


ln 3 2


x


x C


  . C. 3 ln 3 12
2


x


C
x


  . D. 3 ln 3 1ln
2


x


x C


  .


Lời giải
Chọn B



Câu 6. Cho hàm số f x

 

có đồ thị như hình bên. Số nghiệm thực của phương trình f2

 

x  1 0 bằng


A.3. B.6. C.4. D.1.


Lời giải
Chọn C


Ta có f2

 

x  1 0

 


 



1
1


f x
f x





 


 



.


Dựa vào đồ thị suy ra phương trình f x

 

1 có 1 nghiệm, f x

 

 1 có 3 nghiệm nên phương
trình đã cho có 4 phân biệt.



Câu 7. Cho hình chóp .S ABCDcó đáy ABCD là hình chữ nhật ABa BC, 2 ,a SAaSA vuông
góc với mặt phẳng đáy. Cơ sin của góc giữa đường thẳng SD và mặt phẳng

SAC

bằng


A.2.


5 B.


21
.


5 C.


3
.


2 D.


1
.
2
Lời giải


Chọn B



(9)

Kẻ DEAC E, AC ta có DESA do đó DE(SAC). Suy ra góc giữa đường thẳng SD
mặt phẳng bằng góc DSE.


Ta có 2 , 5, 21.


5 5



a


EDSDa SE


Tam giác DSEvuông tại E nên cos 21.


5


SE
DSE


SD


 


Câu 8. Số các số tự nhiên gồm ba chữ số khác nhau lập từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 là


A. C83. B. P8. C. A83. D. P3.


Chọn C


Số các số tự nhiên gồm 3 chữ số khác nhau được lập thành từ dãy trên là A83.


Câu 9. Cho a là số thực dương tùy ý khi đó


5
2
log



2 2


a


 


 


 


bằng:


A. 5 log2 3
2


a . B.5 log2 2
3


a . C. 5 log2 3
2


a . D. 3 5 log2
2 a.


Lời giải
Chọn A


3


5 5



5 2


2 2 3 2 2 2


2


3


log log log log 2 5log


2
2 2


2


a a


a a


 


 


 


    


 



 


 


Câu 10. Cho số phức z thỏa mãn



3


1 3


1


i
z


i



 . Mô đun của số phức w z i z. bằng


A. 11. B. 8 . C. 8 2 . D. 0 .


Lời giải


A D


B


S



C
E



(10)

Chọn C


1 3

3


4 4
1


i


z i


i


   


 và z  4 4i




. 4 4 . 4 4 8 8


8 2


w z i z i i i i



w


          


 




Câu 11. Trong không gian Oxyz, cho hai điểm A

1; 1; 3 

B

2;1; 1

. Độ dài đoạn thẳng AB
bằng


A. 17. B. 5. C. 13. D. 3.


Lời giải
Chọn A


AB 9 4 4   17.


Câu 12. Cho hàm số


2


2
.


2 1 3


x
y



x



 


Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị đã cho




A. 1. B. 4. C. 3 . D. 2.


Lời giải
Chọn D


Tập xác định: D\

 

2


Ta có 2, 2


2 2


lim

lim



x x


y y


 


    đồ thị hàm số có 2 đường tiệm cận ngang.






2


2
2


2 2 2


2 2 1 3 2 1 3 3


2 8 2 2 4


lim

lim

lim



x x x


x x x


y


x x


  


    


  



 


   




 

 


2


2
2


2 2 2 2


2 2 1 3 2 1 3


,


2 8 2 2


lim

lim

lim

lim



x x x x


x x x


y y



x x


   


       


    


     


 


Do đó đồ thị hàm số có 1 tiệm cận đứng x 2.
Tổng số tiệm cận đứng và tiệm cận ngang là 2.


Câu 13. Đường cong trong hình vẽ sau là đồ thị của hàm số nào dưới đây ?



(11)

A. y x42x23. B. yx42x2. C. yx42x23. D. y x42x2.
Lời giải


Chọn B


Từ hình dạng đường cong và các đáp án ta thấy đường cong là đồ thị hàm số trùng phương:




4 2


0



yaxbxc a với hệ số a0 và đi qua gốc tọa độ nên chọn B


Câu 14. Cho hàm số f x

 

có đạo hàm f

 

x

x21

x3

 

2 x2

2019, x . Số điểm cực tiểu của
hàm số đã cho là:


A. 5. B. 2. C. 3. D. 4 .


Lời giải
Chọn B


 

2

 

2

2019


1 3 2 ,


fxxxx  x


 



2


0 3


1


x


f x x


x
 





   



  


trong đó x3là nghiệm bội chẵn


Bảng biến thiên


Từ bảng biến thiên suy ra hàm số có 2 điểm cực tiểu là x 2 và x1


Câu 15. Cho các số thực a b, thỏa mãn đẳng thức 2a 3

3b2i i

 4 3ivới i là đơn vị ảo. Giá trị
biểu thức P2a b bằng



(12)

A. 0. B.2 . C. 3
2


. D.2.


Lời giải
Chọn A




2a 3 3b2i i 4 3i



2a 3 3bi 2 4 3i 2a 5 3bi 4 3i


          


Vậy ta có


1


2 5 4


2 0


2


3 3


1


a a


a b
b


b





  



 


   


 


 


  




Câu 16. Cho phần vật thế  được giới hạn bởi hai mặt phẳng

 

P

 

Q vng góc với trục Ox tại
0


x , x3. Cắt phần vật thể  bởi mặt phẳng vng góc với trục Ox tại điểm có hồnh độ
bằng x

0x3

ta được thiết diện là hình chữ nhật có kích thước lần lượt là x và 3x.
Thể tích phần vật thể  bằng


A. 27
4



. B. 12 3


5





. C. 12 3


5 . D.


27
4 .


Lời giải
Chọn C


Ta có diện tích thiết diện là S x

 

x 3x.


Vậy thể tích phần vật thể  là:

 



3
0


d


V

S x x
3
0


3 d


x x x


 12 3


5



 .


Câu 17. Cho khối chóp tam giác .S ABC có.. và


2


a


SA , đáy là tam giác ABC vuông cân tại A,


ABACa. Thể tích khối chóp đã cho bằng


A.
3
4


a


. B.


3
12


a


. C.


3
2



a


. D.


3
6


a
.


Lời giải
Chọn B


Thể tích khối chóp .S ABC là :


3


1 1 1 1


. . . .


3 2 3 2 2 12


a a


VSA AB ACa a .


Câu 18. Trong không gian Oxyz, khoảng cách giữa đường thẳng : 1 1



1 4 1


x y z


d     và mặt phẳng


( ) : 2P x y 2z 9 0 bằng:


A. 10


3 . B. 4. C. 2. D.


4
3.
Lời giải



(13)

Chọn C


Phân tích: Chỉ phải tính khoảng cách giữa đường thẳng và mặt phẳng nếu đường thẳng song
song với mặt phẳng. khi đó khoảng cách giữa đường thẳng và mặt phẳng là khoảng cánh từ một
điểm bất kì thuộc đường thẳng tới mặt phẳng


Đường : 1 1


1 4 1


x y z


d     đi qua M và có VTCP u (1; 4;1)



Mặt phẳng ( ) : 2P x y 2z 9 0có VTPT n (2; 1; 2)


Ta có:


. 0


/ /( )
( )


u n


d P


M P


 









 


 ;( ) ( ;( ))


2 1 9


2
4 1 4


M P
d P


dd    


  .


Câu 19. Thể tích của khối cầu

 

S có bán kính 3
2


R bằng


A. 3


4




. B. 3


2




. C. 4 3

. D. .


Lời giải


Chọn B


Áp dụng công thức 4 3


3


V

R


3


4 3 3


3 2 2


V

 



 


 
 


.


Câu 20. Tập nghiệm của phương trình

 



2 2 1


2 xx 4 là


A.

1; 3

. B.

 

1 . C.

1;3

. D.

 

3 .


Lời giải
Chọn C


 

2 x22x14

 

2 x22x1 

 

2 4 2 2 1 4 3
1


x


x x


x





     


 


.


Vậy tập nghiệm của phương trình là

1;3

.


Câu 21. Trong không gian Oxyz, cho điểm I

3; 1; 4

và mặt cầu

  

S1 : x1

2y2 

z2

2 1.
Phương trình của mặt cầu

 

S có tâm I và tiếp xúc ngoài với mặt cầu

 

S1


A.

x3

2

y1

2

z4

2 4. B.

x3

2

y1

2

z4

2 16.



C.

x3

2

y1

2

z4

2 4. D.

x3

2

y1

2

z4

2 2.


Lời giải



(14)

Chọn C


Gọi I1là tâm mặt cầu

 

S1R1 là bán kính mặt cầu

 

S1 .
Tính được khoảng cách 2 2 2


1 2 1 2 3 1 1


II     R  nên điểm I nằm ngồi mặt cầu

 

S1


Suy ra bán kính của mặt cầu

 

SRII1R12.


Câu 22. Gọi Mm lần lượt là giá trị lớn nhất, nhỏ nhất của hàm số

 

sin4 cos2 1cos 2


4


f xxxx.


Giá trị Mm bằng
A. 1


16. B.


9


16. C.



1


2. D.


11
16.


Lời giải
Chọn B


Ta có

 

4 2 1


2
4


f xsin x cos x  cos x 4 2 1

2



1 1 2


4


sin x sin x sin x


     4 3 2 5


2 4


sin x sin x


   .



Đặt sin x2 t

0 t 1

khi đó đưa về bài tốn tìm M m là giá trị lớn nhất, nhỏ nhất của


hàm số

 

2 3 5 ,

0;1



2 4


g tttt .


Ta có

 

2 3

 

0 2 3 0 3

0;1



2 2 4


g t  t g t   t   t  .


 

0 5;

 

1 3; 3 11


4 4 4 16


ggg  
  .


Vậy 5, 11 9


4 16 16


Mm Mm .


Câu 23. Đặt alog 5,2 blog 35 . Mệnh đề nào dưới đây đúng ?



A. log 4548 2
4


a b


ab





 . B. 48


2
log 45


4


a ab


ab





 .


C. 48


1 2
log 45



4


b
a b





 . D. 48


2 4


log 45
4


a ab


ab





 .


Lời giải
Chọn B


Ta có log 32 log 5.log 32 5ab







2
2


2 2 2


48 4


2 2 2


log 3 .5


log 45 2 log 3 log 5 2


log 45


log 48 log 2 .3 4 log 3 4


a ab


ab


 


   


  .



Cách 2: Trắc nghiệm


Lưu biến nhớ log 52A, log 35B



(15)

Bấm log 4548 2A 0
4


A B


AB




 


 nên đáp án B đúng.


Câu 24. Cho hàm số yf x

 

có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào
dưới đây


A.

1;1

. B.

1; 

. C.

0;1

. D.

2;1

.


Lời giải
Chọn C


Dựa vào đồ thị ta thấy hàm số nghịch biến trên hai khoảng

 ; 2

0;1

nên chọn đáp án


C.



Câu 25. Trong không gian Oxyz, cho đường thẳng

 

d vng góc với mặt phẳng

 

P : 2x3z 5 0.
Một vectơ chỉ phương của đường thẳng

 

d


A.u 

2; 3;5

. B. u 

2; 0; 3

. C. u 

2; 3; 0

. D. u 

2; 0;3

.


Lời giải
Chọn B


 

P : 2x3z 5 0, suy ra vectơ pháp tuyến của

 

Pn 

2; 0; 3

.


Đường thẳng

 

d vng góc với mặt phẳng

 

P nên có vectơ chỉ phương là u

2; 0; 3

.
Câu 26. Tổng các nghiệm thực của phương trình log 7 10

x

1


x
   là


A.7 . B.1. C. 2. D. 10 .


Lời giải
Chọn B


Ta có log 7 10

x

 1 x  7 10x 101x102x7.10x100 10 2 log 2
log 5
10 5


x
x


x
x



   






 






Tổng các nghiệm thực bằng log 2 log 5 log10 1



(16)

Câu 27. Cho cấp số nhân

 

un . Biết tổng ba số hạng đầu bằng 4, tổng của số hạng thứ tư, thứ năm và thứ
sáu bằng32. Số hạng tổng quát của cấp số nhân là


A. 4.

 

2
5


n
n


u    . B.

 



1
4. 2
5
n


n
u



  . C.

 



1
4. 2
3
n
n
u



 . D. 4.

 

2


3


n
n


u   .


Lời giải
Chọn C


Gọi q là công bội của cấp số nhân

 

un .



Ta có: 1 2 3


4 5 6


4
32


u u u


u u u


  





   


2



1


3 4 5


1 1 1


1 4


32



u q q


u q u q u q


 

 
   




2
1
3 2
1
1 4
1 32


u q q


q u q q


   

 
   




2



1 1


4


1 4


3


2 2


u q q u


q q

    
 

 
 
 
.


Vậy

 



1
4. 2
3


n
n
u


 .


Câu 28. Cho 3

 



1 f x dx4


, khi đó 1



0 f 2x1 dx


bằng:


A. 8. B. 2. C. 1


2. D.


3
2.
Lời giải


Chọn B


Đặt t2x1 2


2



dt


dt dx dx


   


Đổi cận:


Ta có 1

3

 

3

 



0 1 1


1


2 1 . 2


2 2


dt


f xdxf tf x dx


.


Câu 29. Họ nguyên hàm của hàm số

 

2

3 x



f xxe


A. 3x22xex2exC. B. 6x22xex2exC.



C. 3x2ex2xexC. D. 3x2 2xex2exC.


Lời giải
Chọn A



(17)

Ta có

f x dx

 

2x

3e dxx

6

xdx2

xe dxx
Đặt u xx du dxx


dv e dx v e


 


 




 


 


 


 

2



3 2 x x


f x dxxxee dx


3x22xex2exC.


Câu 30. Cho hàm số yx4mx21 với mlà số thực âm. Số điểm cực trị của hàm số đã cho là


A. 2 . B. 3. C. 1. D. 0.


Lời giải
Chọn B


Phương pháp trắc nghiệm. Vì hàm số bậc 4 trùng phương hệ số ;a b trái dấu nhau nên có 3 cực
trị.


Phương pháp tự luận. Tính 3


0


4 2 0


2


2


x


m


y x mx x


m
x




 



      





  




nên hàm số có 3 cực trị.


Câu 31. Gọi A, B, C lần lượt là điểm biểu diễn hình học của các số phức z1  1 2i, z2   1 i


3 3 4


z   i. Điểm G trọng tâm ABC là điểm biểu diễn của số phức nào sau đây?


A. z 1 i B.z 3 3i. C.z 1 2i. D.z 1 i.


Lời giải
Chọn D


A, B, C lần lượt là điểm biểu diễn hình học của các số phức z1 1 2i, z2   1 i



3 3 4


z   i suy ra A

1, 2

, B

1;1

, C

3; 4

.


Điểm G là trọng tâm ABC


 



1 1 3


1
3


2 1 4
1
3


G


G


x
y


  


 





 


  







1;1



G


 .


Vậy G là điểm biểu diễn của số phức z 1 i.


Câu 32. Cho hình chóp .S ABCD, đáy là hình vng cạnh bằng a. Gọi M là trung điểm SA. Biết hình
chiếu vng góc của S trùng với trọng tâm G của tam giác ACD, góc giữa đường thẳng SB


và mặt phẳng đáy bằng 600. Khoảng cách từ M đến mặt phẳng

SBC

bằng


A. 42


14


a


. B. 3 42



14


a


. C. 42


21


a


. D. 2 42


21


a


.


Lời giải



(18)

Chọn A


Cách 1:


Gọi O là giao điểm của ACBD.




SB ABCD,

SB BG,

SBG 60.

2


1
2


ABC


Sa .


2


BDa 2 2 2 2


3 3


BG a a


   .


Trong tam giác vng SBG có tan 60 SG


BG


  SGtan 60 .BG 2 6


3 a


 .


3


.


1 6


.


3 9


S ABC ABC


VS SGa .


3
.


6
9


A SBC


V a


  . 1 .


2


M SBC A SBC


V V



  6 3


18 a


 .


Trong tam giác vng SBG, có 4 2


sin 60 3


SG


SB  a


 .


Trong tam giác vuông OGC, có GCOC2OG2


2 2


2 1 2 5


2 3 2 3


a a


a


   



  


   


.


Trong tam giác vng SGC, có 2 2 29


3


SCSGGCa.


2


7
3


SBC


S a


  .


O
M


G


C



A D


B


S



(19)



.


.


3


1 42


. , ,


3 14


M SBC


M SBC SBC


SBC


V


V S d M SBC d M SBC a



S




     .


Cách 2:


Gọi O là giao điểm của ACBD.


Ta có MO//SCMO//

SBC

,

,

3

,



4


d M SBC d O SBC d G SBC


   .


DựngGIBC I

BC

BC

SGI

SBC

 

SGI

theo giao tuyến SI.
Trong tam giác SGI dựng đường cao GHGH

SBC

d G SBC

,

GH.




SB ABCD,

SB BG,

SBG 60.
2


BDa 2 2 2 2


3 3



BG a a


   .


Trong tam giác vng SBG có tan 60 SG


BG


  SGtan 60 .BG 2 6


3 a


 .


2
3


GIa.


Trong tam giác vng SGI, có 1 2 12 12


GHGISG


2 42
21


GH a


  .



Vậy

,

3 2 42. 42


4 21 14


d M SBC a a


   .


I
O


M


G


C


A D


B


H
S



(20)

Câu 33. Cho khối lăng trụ tam giác ABC A B C. ' ' ', đáy là tam giác ABC đều cạnh a. Gọi M là trung
điểm AC. Biết tam giác A MB cân tại A và nằm trong mặt phẳng vng góc với mặt phẳng


ABC

. Góc giữa A B với mặt phẳng

ABC

là 30. Thể tích khối lăng trụ đã cho là:
A.


3


3
16


a


. B.


3


3
48


a


. C.


3


3
24


a


. D.


3



3
8


a


.


Lời giải
Chọn A


Gọi H là trung điểm BM, tam giác A BM cân tại A nên A H' BM


Ta có:


 



 



'


' ' ( )


'


A BM ABC


A BM ABC BM A H ABC


A H BM








   








.


Tam giácABC đều cạnh a nên ta có :


2


3 3


2 4


3
4


ABC


a a



BM BH


a
S




  










 


A B có hình chiếu vng góc trên

ABC

HB
Góc tạo bởi A B với mặt phẳng

ABC

là góc A BH
Xét tam giác A BH vuông tại H, ta có:


  ' 3 1


' 30 , tan ' ' .


4 3 4


o A H a a



A BH A BH A H


BH


     ,


2 3


. ' ' '


3 3


' . .


4 4 16


ABC A B C ABC


a a a


VA H S   .


H


B'


A


B



C
A'


C'


M



(21)

Câu 34. Một trang trại chăn nuôi lợn dự định mua thức ăn dự trữ, theo tính tốn của chủ trang trại, nếu
lượng thức ăn tiêu thụ mỗi ngày là như nhau và bằng ngày đầu tiên thì số lượng thức ăn đã mua
để dự trữ sẽ ăn hết sau 120 ngày. Nhưng thực tế, mức tiêu thụ thức ăn ngày sau tăng 3% so với
ngày trước. Hỏi thực tế lượng thức ăn dự trữ đó sẽ hết trong khoảng bao nhiêu ngày?.


A. 50 ngày. B. 53 ngày. C. 52 ngày. D. 51 ngày.
Lời giải


Chọn D


Gọi m là lượng thức ăn tiêu thụ của ngày đầu tiên.
Số lượng thức ăn mua dự trữ là 120.m.


Gọi n là số ngày thực tế lượng thức ăn sẽ hết. Ta có n là số nguyên lớn nhất thỏa mãn:

1

1, 03

1


120 .1, 03 .... . 1, 03 120 51, 63


0, 03


n
n



mm m  m     n


Suy ra n51.


Câu 35. Cho


2
2
0


d ln 3


2 4


x


x a b


xx   


với a, b là các số thực. Giá trị của a23b2 bằng


A. 7


27 . B.


1


2. C.



5


18. D.


35
144.
Lời giải
Chọn C
Ta có:
2
2
0
d
2 4
x
x
xx


2
2 2
0
1 1
d


2 4 2 4


x


x



x x x x



 

   
 


2 2
2 2
0 0
1 1
d d


2 4 2 4


x


x x


x x x x



 
   

.
Tính
2
1 2

0
1
d
2 4
x
I x
x x


 


2
2
0
1


ln 2 4


2 x x


   1

ln12 ln 4

1ln 3


2 2
   .
Tính
2
2 2
0
1
d


2 4
I x
x x

 


2
2
0
1
d


1 3 x


x


 


.


Đặt x 1 3 tanu d 32 du
cos


x


u


  . Đổi cận: x0



6


u



  và x2


3
u


  .
Suy ra


3


2 2 2


6


3 1


. d


cos 3 1 tan


I u
u u






3
6
1
d
3 u



1


3 6


3




 




  6 3



 .
Vậy
2
1 2
2
0
d

2 4
x


x I I
xx  


1ln 3


2 6 3




  .



(22)

Suy ra


2
2


2 2 1 1 5


3 3.


2 6 3 18


ab     


   


.



Câu 36. Một con quạ bị khát nước, nó tìm thấy một bình đựng nước hình trụ, do mức nước trong bình chỉ
cịn lại hai phần ba so với thể tích của bình nên nó khơng thể thị đầu vào uống nước được. Nó
liền gắp 3 viên bi ve hình cầu để sẵn bên cạnh bỏ vào bình thì mực nước dâng lên vừa đủ đầy
bình và nó có thể uống nước. Biết 3 viên bi ve hình cầu đều có bán kính là 1cm và chiều cao của
bình hình trụ gấp 4 lần đường kính của mỗi viên bi. Diện tích xung quanh của bình hình trụ nói
trên gần với số nào nhất trong các số sau ?


A. 65,8cm2. B.61, 6cm2. C.66, 6cm2. D.62,3cm2.


Lời giải
Chọn B


Gọi chiều cao của bình nước hình trụ là h cm


Gọi bán kính của bình nước hình trụ là R cm



Ta có chiều cao của bình nước thì gấp 8 lần bán kính của viên bi ve nên: h8.1 8

cm



Khi cho ba viên bi vào bình nước thì nước dâng lên đến miệng bình, nên ta có thể tích của ba
viên bi bằng một phần ba thể tích của bình nước


 





3 2


4 1


3 . . 1 . 8.



3 3


3
2


R


R cm




 




 


 


 


Diện tích xung quanh của bình nước là: 2 2. . 3.8 61, 6

2



2


xq


S

Rh

cm



Câu 37. Lô gô gắn tại Shoroom của một hãng ơ tơ là một hình trịn như hình vẽ bên. Phần tô đậm nằm
gữa Parabol đỉnh I và đường gấp khúc AJB được giát bạc với chi phí 10 triệu đồng /m2 phần


còn lại phủ sơn với chi phí 2 triệu đồng/m2. Biết AB2 ,m IAIB 5m và 13


2


JAJBm


. Hỏi tổng số tiền giát bạc và phủ sơn của lơ gơ nói trên gần với số nào nhất trong các số sau:



(23)

A. 19 250 000đồng. B. 19 050 000 đồng. C. 19 150 000đồng. D. 19 500 000đồng.
Lời giải


Chọn C


Chọn hệ trục tọa độ như hình vẽ. DoAB2 ,m IAIB 5m và 13
2


JAJBm


Nên ta có :

0; 0 ,

1; 2 ,

1; 2 ,

0;1
2


I AB J


 ; phương trình Para bol là


2
2



yx , đường thẳng


JBlà 3 1


2 2


yx .


Gọi Klà tâm của hình trịn 0;5 , 5


4 4


KBKI  r K r


  .


Phần diện tích dát bạc là :


1


2 2


1
0


3 1 7


2 2



2 2 6


S   x  x dxm


 


.


Phần diện tích phủ sơn là : S2

r2S13, 73m2.


Tổng số tiền giát bạc và phủ sơn của lơ gơ nói trên là: 7.10000000 3, 73.2000000 19127000


6  


đồng


Câu 38. Cho hàm số yf

 

x liên tục trên  và có đồ thị như hình vẽ sau


x
y



(24)

Hàm số yf x

22x3

nghịch biến trên khoảng nào dưới đây ?


A.

 ; 1

. B.

  1;

. C.

2; 0

. D.

2; 1

.
Lời giải


Chọn D


Đặt g x

 

f x

22x3

g x

 

2

x1

f

x22x3

.



Do 2

2


2 3 1 2 2


xx  x   và đồ thị hàm số yf

 

x ta có:


 

0


g x 


2



1 0


2 3 0


x


f x x


 

 


   


 2


1



2 3 3


x


x x


 

 


  


1
0


2


x
x
x


 



 



  




.


Ta có bảng xét dấu g x

 

như sau


Suy ra hàm số yf x

22x3

nghịch biến trên mỗi khoảng

2; 1

0; 

nên chọn
D.


Câu 39. Trong không gian Oxyz, cho hai đường thẳng chéo nhau

 

1 : 1 1 2


3 2 2


x y z


d     


 ,

 

2


4 4 3


:


2 2 1


x y z


d     



 . Phương trình đường vng góc chung của hai đường thẳng


   

d1 , d2 là
A.

 

1


4 1


:


2 1 2


x y z


d    


 . B.


2 2 2


6 3 2


xyz


 


 .


C. 2 2 2


2 1 2



xyz


 


 . D.


4 1


2 1 2


xyz


 


  .


Lời giải
Chọn C


Hai đường thẳng

   

d1 , d2 có VTCP là u1

3; 2; 2

u2

2; 2; 1

.



(25)

Lấy điểm A

1 3 ; 1 2 ; 2 2 t   tt

  

d1B

4 2 ; 4 2 ; 3 uu  u

  

d2
AB là đường thẳng vng góc chung của hai đường thẳng

   

d1 , d2 khi


1
2


. 0



. 0


AB u
AB u











 


  12 17 29


9 12 21


u t


u t


  


 


  




1
1


u
t


 

 











4;1; 0
2; 2; 2


2;1; 2


A
B
AB









 





 .


Vậy phương trình đường vng góc chung của hai đường thẳng

   

d1 , d2


2 2 2


2 1 2


xyz


 


.


Câu 40. Bạn Nam làm bài thi thử THPT Quốc gia mơn Tốn có 50 câu, mỗi câu có 4 đáp án khác nhau,
mỗi câu đúng được 0, 2 điểm, mỗi câu làm sai hoặc không làm không được điểm cũng không bị
trừ điểm. Bạn Nam đã làm đúng được 40 câu còn 10 câu còn lại bạn chọn ngẫu nhiên mỗi câu
một đáp án. Xác suất để bạn Nam được trên 8, 5điểm gần với số nào nhất trong các số sau?



A. 0,53. B. 0, 47. C. 0, 25. D.0,99.


Lời giải
Chọn A


Vì mỗi câu có 4 phương án trả lời và chỉ có một phương án đúng nên xác suất để chọn đúng đáp


án là 1


4, xác suất để trả lời sai là
3
4.


Gọi A là biến cố bạn Nam được trên 8, 5điểm thì A là biến cố bạn Nam được dưới 8, 5điểm


Vì bạn Nam đã làm chắc chắn đúng 40 câu nên để có A xảy ra 2 trường hợp


TH1: Bạn Nam chọn được một câu đúng trong 10 câu còn lại, xác suất xảy ra là:


9


1 3


10. .


4 4


 
 


 


TH2: Bạn Nam chọn được hai câu đúng trong 10 câu còn lại, xác suất xảy ra là:


2 8


2
10


1 3


. .


4 4


C       
   


Vậy

 

 



9 2 8


2
10


1 3 1 3


1 1 10. . . . 0, 53


4 4 4 4



P A  P A     C       


      





×