Tải bản đầy đủ (.pdf) (28 trang)

Đề luyện thi THPT năm 2020 đề số 10

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.09 MB, 28 trang )

(1)

ĐỀ SỐ 10 Thời gian làm bài: 90 phút, không kể thời gian phát đề
Câu 1. Với a là số thực dương tùy ý, log2a3 bằng


A. 1log2


3 a. B. 3 log+ 2a. C. 3log2a. D. 2


1
log
3+ a.
Câu 2. Cho a là số thực tùy ý.

( )

a3 2 bằng


A. a. B. a9. C. a6. D. a5.


Câu 3. Thể tích của khối chóp có diện tích đáy 3 và chiều cao 3 là


A. V =3. B. V =1. C. V =27. D. V =9.


Câu 4. Cho hàm số y= f x

( )

có bảng biến thiên như sau:


Hàm số đã cho đạt cực đại tại


A. x= −2. B. x= −1. C. x=0. D. x=3.


Câu 5. Thể tích khối lập phương có cạnh bằng 1 là


A. 1


3. B. 1. C. 3. D. 3.


Câu 6. Đường cao của khối chóp có diện tích đáy bằng 2 và thể tích bằng 4 là



A. 2 . B. 8. C. 6 . D. 3.


Câu 7. Số cách xếp bốn học sinh ngồi vào một bàn dài là


A. 10. B. 1. C. 4. D. 24.


Câu 8. Cho hàm số f x

( )

có đồ thị như hình vẽ


Điểm cực tiểu của đồ thị hàm số đã cho là


A. −1 B.

(

− −1; 2

)

. C.

( )

1; 2 . D. 1.
Câu 9. Cho cấp số nhân

( )

unu1 =2 và u2 =6. Cơng bội của cấp số nhân đó bằng


x – ∞ -2 0 + ∞


y' 0 + 0


y


+ ∞


-1


3


– ∞


O x



y


1
2


1 2
1




2




1




2




THUVIENTOAN.NET KỲ THI THPT QUỐC GIA 2020



(2)

A. 2 . B. 1


3. C. 6 . D. 3.


Câu 10. Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ ?



A. y= − +x4 2x2−1. B. y=x4−2x2−1. C. y=x4−2x2+1. D. y= − +x4 2x2+1.
Câu 11. Cho hàm số f x

( )

có bảng biến thiên như sau:


Hàm số đã cho đồng biến trên khoảng nào dưới đây?


A.

(

−2;0

)

. B.

(

−1;1

)

. C.

(

−;0

)

. D.

(

0;+

)

.


Câu 12. Cho khối chóp S ABC. . Gọi A, B, C lần lượt là trung điểm của các cạnh SA, SB, SC (minh
hoạ như hình vẽ). Tỉ số .


.
S A B C


S ABC
V


V


  


bằng


A. 8. B. 2 . C. 1


8. D.


1
2.
Câu 13. Thể tích khối lăng trụ có diện tích đáy 2



a và chiều cao a


A. a3. B.


3


3


a


. C. 3a3. D. 2a3.


Câu 14. Phương trình đường tiệm cận đứng của đồ thị hàm số 2 1
1
x
y


x



=


− là


A. x= −1. B. x= −2. C. x=2. D. x=1.


Câu 15. Tập xác định của hàm số y=x−2 là


x – ∞ -2 0 2 + ∞



– 0 + 0 – 0 +
+ ∞


-1


1


-1


+ ∞


S


A


B


C
C
B


A


O x



(3)

A. \ 0 .

 

B. . C.

(

−;0

)

. D.

(

0;+

)

.
Câu 16. Hàm số y=x3+3x2+1 nghịch biến trên khoảng nào dưới đây?


A.

(

−2;0

)

. B.

(

2;+

)

. C.

( )

0; 2 . D.

(

− −; 2

)

.
Câu 17. Đạo hàm của hàm số

(

)




1
3


3 1


y= x+ là


A.


(

)

2
3


3
3x+1


. B.


3


1


3x+1 C. 3

(

)

2


1
3x+1


D.


(

)

2

3


3
3 3x+1


.


Câu 18. Cho hàm số y= f x

( )

có bảng biến thiên như sau:


Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:


A. 3. B. 4. C. 2. D. 1.


Câu 19. Cho khối lăng trụ đứng ABC A B C.    có đáy là tam giác đều và có tất cả các cạnh bằng. Thể tích


của khối lăng trụ đã cho là


A.


3
3
2
a


. B.


3
3
12
a



. C.


3
3
4
a


. D.


3
3
6
a


.


Câu 20. Cho tứ diện O ABC. có OA, OBOC đơi một vng góc (minh họa như hình vẽ). Biết
OA=OB=OC=a, khoảng cách từ điểm O đến mặt phẳng

(

ABC

)

bằng


A.


3
a


. B. 3


3
a



. C. 3a. D. a 3.


Câu 21. Tập xác định của hàm số

(

)


2
3


1


y= x− là


A.

(

1;+

)

. B.

(

0;+

)

. C. . D. \ 1 .

 


Câu 22. Cho số thực dương a. Biểu thức


1
3.


a a được viết dưới dạng lũy thừa cơ số a


A.


5
6


a . B.


6
5


a . C.



2
5


a . D.


1
6
a .
Câu 23. Giá trị lớn nhất của hàm số f x

( )

= − −x3 3x trên đoạn

−2;0

bằng


O B


A


C


x – ∞ 2 + ∞


y' 0 + +


y


0


1



(4)

A. 4 . B. −14. C. 14 . D. −4.
Câu 24. Hàm số nào dưới đây có đồ thị như hình vẽ sau:


A.



4
3


y=x . B. y=x−3. C.


3
4


y=x . D.


3
4
y=x− .
Câu 25. Cho 2 số thực dương ,a b thỏa mãn a b2 =9. Giá trị của 2 log3a+log3b bằng ?


A. 9. B. 3. C. 1. D. 2 .


Câu 26. Cho hàm số y= f x( ) có đạo hàm f x( )=x x( −  1), x . Số điểm cực trị của hàm số đã cho


A. 2 . B. 0 . C. 3. D. 1.


Câu 27. Cho khối tứ diện OABCOA, OB, OC đơi một vng góc và OA=a, OB=2a, OC=3a
(minh họa như hình bên). Thể tích của khối tứ diện là:


A. 2a3. B. 3a3. C. 6a3. D. a3.


Câu 28. Cho khối chóp tứ giác đều S ABCD. có tất cả các cạnh bằng a. Thể tích của khối chóp đã cho
bằng:



A.


3
2
3
a


. B.


3


3


a


. C.


3
2
2
a


. D.


3
2
6
a



.


Câu 29. Cho hàm số y= f x

( )

có bảng biến thiên như sau


Số nghiệm phương trình 2f x

( )

− =5 0là


A. 2 . B. 1. C. 0. D. 3.


Câu 30. Cho số thực a thỏa mãn 9a+9−a =23. Giá trị biểu thức 5 3 3


1 3 3


a a


a a





+ +


− − bằng


A. 1


2. B.


5
2



− . C. 3


2. D. 2.


Câu 31. Gọi , ,A B Clà ba điểm cực trị của đồ thị hàm số y=x4−2x2+2. Diện tích của tam giác ABC
bằng


A. 4. B. 2 . C. 10. D. 1.


Câu 32. Cho hàm số ( )f x có bảng xét dấu của f x( ) như sau:


x – ∞ 2 + ∞


y' 0 + 0


y


+ ∞ 2


– ∞


O x


y


1



(5)

Số điểm cực trị của hàm số y= f x( 2−1) là


A. 1. B. 3. C. 2 . D. 4 .



Câu 33. Cho hàm số f x

( )

. Biết rằng hàm số y= f

( )

x có đồ thị như hình vẽ. Hàm số y= f

(

2 2− x

)


đồng biến trên khoảng nào dưới đây?


A.

( )

0;1 . B.

(

−1;0

)

. C.

(

−2;0

)

. D.

( )

0; 2 .


Câu 34. Từ một miếng bìa cứng có hình tam giác đều cạnh a người ta gấp theo các đường đứt đoạn như
trong hình vẽ dưới đây để được một hình tứ diện đều. Thể tích của khối tứ diện tương ứng với
hình tứ diện đó bằng


A.


3
2
96
a


. B.


3
2
12
a


. C.


3
3
96
a



. D.


3
3
12
a


.


Câu 35. Cho log 152 =a và log530=b. Biểu thức log 2259 bằng


A.


1
ab


ab a+ + . B. 1


ab


ab b− − . C. 1


ab


ab a− − . D. 1


ab
ab b+ +



Câu 36. Cho hình chóp S ABCD. .có đáy ABCD là hình vng cạnh bằng a.Cạnh bên SA=a và vng
góc với mặt phẳng đáy. Gọi M N P Qlần lượt là trung điểm các cạnh , , , SA SB SC SD, , , .Thể
tích của khối chóp cụt MNPQ ABCD. bằng


A.


3


6


a


. B.


3


7
24


a


. C.


3


3


a


. D.



3


4


a


Câu 37. Một hộp chứa 15 cái thẻ được đánh số từ 1 đến 15, rút ngẫu nhiên ba cái thẻ. Xác suất để rút
được ba cái thẻ có tổng các số ghi trên ba thẻ là số lẻ bằng:


A. 8


65. B.


32


65. C.


16


65. D.


24
65.


x – ∞ 3 + ∞


+ 0 – 0 +


O


1

2


− 1 2



(6)

Câu 38. Tổng số các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số


(

)(

)



2


2


4 4 8


2 1


x x
y


x x


− −


=


− + là:


A. 4 . B. 3. C. 2 . D. 1.



Câu 39. Từ một tấm bìa hình vng ABCD có cạnh bằng 30cm người ta gấp theo các đoạn MN PQ, sao
cho AD BC, trùng nhau để tạo thánh một hình lăng trụ bị khuyết 2 đáy như hình minh họa dưới
đây


Đề thể tích của khối lăng trụ tương ứng với hình lăng trụ tạo thành là lớn nhất thì giá trị của x
bằng


A. 8cm. B. 9cm. C. 10cm. D. 5cm.


Câu 40. Tập hợp tất cả các giá trị của tham số m để hàm số y=x3+3x2−mx−4 đồng biến trên khoảng

(

−2;1

)



A.

−;0

)

. B.

(

− −; 3

. C.

−3;9

. D.

 

0;9 .


Câu 41. Cho hai hàm số f x

( )

g x

( )

=x3−5x2+2x+8. Trong đó hàm số f x

( )

liên tục trên và
có đồ thị như hình vẽ dưới đây.


Số nghiệm của phương trình g f x

(

( )

)

=0 là


A. 1. B. 3. C. 6 . D. 9.


Câu 42. Cho hình chóp S ABCD. có đáy là hình chữ nhật với AB=a và 6
2
a


AD= , mặt bên SAB
tam giác đều và nằm trong mặt phẳng vng góc với mặt phẳng đáy. Góc giữa đường thẳng SB
và mặt phẳng

(

SCD

)

bằng?



A. 30 .0 B. 45 .0 C. 60 .0 D. 90 . 0
Câu 43. Giá trị của tham số m thuộc khoảng nào dưới đây để đồ thị hàm số 3 2


3 9


y=xxx+m cắt trục
hoành tại ba điểm phân biệt có hồnh độ lập thành cấp số cộng?


C
D


B
A


x
x


C
A


D


N Q


P
M


B
M



N


P


Q


O


1


x
y


2
1




2




1


3 ( )


y=f x


1




(7)

A.

(

− −; 4

)

. B.

(

−4;0

)

. C.

( )

0;5 . D.

(

5;+ 

)

.
Câu 44. Cho log8a+log4b=4 và log4a2+log8b=5. Giá trị của tích ab bằng


A. 29. B. 218. C. 23. D. 2 .


Câu 45. Cho khối lăng trụ có tất cả các cạnh bằng ,a đáy là lục giác đều và góc tạo bởi cạnh bên và mặt
đáy là 0


60 . Thể tích khối lăng trụ đó bằng


A.


3


3
.
2


a


B.


3
3


.
4


a



C.


3


27
.
8


a


D.


3


9
.
4


a


Câu 46. Cho hàm số f x

( )

, hàm số '

( )



y= f x liên tục trên và có đồ thị như hình vẽ. Bất phương trình


(

1

)

1


f x+  x+ +m ( m là tham số thực) nghiệm đúng với mọi x −

(

1;3

)

khi và chỉ


A. mf

( )

2 −2. B. mf

( )

0 . C. mf

( )

2 −2. D. mf

( )

0 .
Câu 47. Cho hàm số ( )f x xác định, liên tục trên R và có đồ thị như hình vẽ:


Để hàm số 2


( 1)


y= f ax +bx+ , với ,a b0có năm cực trị thì điều kiện cần và đủ là:


A. 4ab28a B. b24a C. 4ab28a D. b28a


Câu 48. Cho khối tứ diện ABCDAB=CD=5 ,a AC=BD=6 ,a AD=BC=7 .aThể tích khối tứ diện
đó bằng


A. a3 95. B. 8a3 95. C. 2a3 95. D. 4a3 95.


Câu 49. Cho khối tứ diện ABCDAB=5;CD= 10;AC=2 2;BD=3 3;AD= 22; BC= 13.
Thể tích của khối tứ diện đó bằng


A. 20. B. 5. C. 15. D. 10.


Câu 50. Cho a b, là các số thực thỏa mãn a b 1. Biết rằng giá trị nhỏ nhất của biểu thức


2 2


loga 3logb
b


a


P a



b


= + là một số nguyên dương có hai chữ số, tổng của hai chữ số đó bằng


A. 8. B. 3. C. 1. D. 6 .


O x


y


1
2


1




1 2


1




2




O x


y



1



(8)

BẢNG ĐÁP ÁN


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
C C A C B C D B D B A C A D A A A C C B A A C D D
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
A D D B B D B A A C B B C C B C B D A D D A C B D


HƯỚNG DẪN GIẢI
Câu 1. Với a là số thực dương tùy ý, log2a3 bằng


A. 1log2


3 a. B. 3 log+ 2a. C. 3log2a. D. 2


1
log
3+ a.
Lời giải


Chọn C
Ta có 3


2 2


log a =3log a.


Câu 2. Cho a là số thực tùy ý.

( )

a3 2 bằng


A. a. B. 9


a . C. 6


a . D. 5


a .
Lời giải


Chọn C


Ta có

( )

a3 2 =a6.


Câu 3. Thể tích của khối chóp có diện tích đáy 3 và chiều cao 3 là


A. V =3. B. V =1. C. V =27. D. V =9.


Lời giải
Chọn A


Cơng thức thể tích khối chóp: 1 . 13.3 3


3 3


V = B h= = (đvtt).
Câu 4. Cho hàm số y= f x

( )

có bảng biến thiên như sau:


Hàm số đã cho đạt cực đại tại



A. x= −2. B. x= −1. C. x=0. D. x=3.


Lời giải
Chọn C


Dựa vào bảng biến thiên chọn C.


Câu 5. Thể tích khối lập phương có cạnh bằng 1 là


A. 1


3. B. 1. C. 3. D. 3.


Lời giải


x – ∞ -2 0 + ∞


y' 0 + 0


y


+ ∞


-1


3



(9)

Chọn B


Ta có V =a3=1.



Câu 6. Đường cao của khối chóp có diện tích đáy bằng 2 và thể tích bằng 4 là


A. 2 . B. 8. C. 6 . D. 3.


Lời giải
Chọn C


Ta có 1 3 12 6


3 2


V


V Bh h


B


=  = = = .


Câu 7. Số cách xếp bốn học sinh ngồi vào một bàn dài là


A. 10. B. 1. C. 4. D. 24.


Lời giải
Chọn D


Số cách xếp bốn học sinh ngồi vào một bàn dài là 4!=24


Câu 8. Cho hàm số f x

( )

có đồ thị như hình vẽ bên.


Điểm cực tiểu của đồ thị hàm số đã cho là


A.−1 B.

(

− −1; 2

)

. C.

( )

1; 2 . D. 1.
Lời giải


Chọn B


Dựa vào đồ thị ta có điểm cực tiểu của đồ thị hàm số đã cho là

(

− −1; 2

)


Câu 9. Cho cấp số nhân

( )

unu1 =2 và u2 =6. Cơng bội của cấp số nhân đó bằng


A. 2 . B. 1


3. C. 6 . D. 3.


Lời giải
Chọn D


1


1. 2 1. 6 2. 3


n
n


u =u q − u =u q = q =q .
Vậy q=3.


Câu 10. Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?



O x


y


O x


y


1
2


1 2
1



2


1



(10)

A. y= − +x4 2x2−1. B. y=x4−2x2−1. C. y=x4−2x2+1. D. y= − +x4 2x2+1.
Lời giải


Chọn B


+) Từ đồ thị và đáp án suy ra đây là hàm số y=ax4+bx2+c. Phần cuối đồ thị đi lên nên a0


 loại A và D.



+) Đồ thị hàm số cắt trục tung tại điểm có tung độ âm nên c0  loạiC.


Vậy ta chọn đáp án B.


Câu 11. Cho hàm số f x

( )

có bảng biến thiên như sau:


Hàm số đã cho đồng biến trên khoảng nào dưới đây?


A.

(

−2;0

)

. B.

(

−1;1

)

. C.

(

−;0

)

. D.

(

0;+

)

.


Lời giải
Chọn A


Từ bảng biến thiên ta có hàm số đồng biến trên khoảng

(

−2;0

)

.


Câu 12. Cho khối chóp S ABC. . Gọi A, B, C lần lượt là trung điểm của các cạnh SA, SB, SC (minh
hoạ như hình vẽ). Tỉ số .


.
S A B C


S ABC
V


V


   bằng


A. 8. B. 2 . C. 1



8. D.


1
2.
Lời giải


Chọn C


Ta có: .
.


1 1 1 1


. . . .


2 2 2 8
S A B C


S ABC


V SA SB SC


V SA SB SC


   =   = =


.


Câu 13. Thể tích khối lăng trụ có diện tích đáy a2 và chiều cao a



A. a3. B.


3


3


a


. C. 3a3. D. 2a3.


x – ∞ -2 0 2 + ∞


– 0 + 0 – 0 +
+ ∞


-1


1


-1


+ ∞


S


A


B


C


C
B



(11)

Lời giải
Chọn A


Thể tích khối lăng trụ có diện tích đáy a2 và chiều cao a là: V=a a2. =a3.
Câu 14. Phương trình đường tiệm cận đứng của đồ thị hàm số 2 1


1
x
y
x

=


− là


A. x= −1. B. x= −2. C. x=2. D. x=1.


Lời giải
Chọn D


Ta có x=1 là phương trình đường tiệm cận đứng của đồ thị hàm số 2 1


1
x
y
x


=


− , vì


1 1
2 1
lim lim
1
x x
x
y
x
+ +
→ →

= = +


− do


(

)



(

)



1


1


lim 2 1 1 0


lim 1 0



1 1 0


x
x
x
x
x x
+
+


+
− = 

 − =


→  − 

.
1 1
2 1
lim lim
1
x x
x
y
x
− −


→ →

= = −


− do


(

)



(

)



1


1


lim 2 1 1 0


lim 1 0


1 1 0


x
x
x
x
x x






− = 

 − =


→  − 

.


Câu 15. Tập xác định của hàm số y=x−2 là


A. \ 0 .

 

B. . C.

(

−;0

)

. D.

(

0;+

)

.
Lời giải


Chọn A


Câu 16. Hàm số y=x3+3x2+1 nghịch biến trên khoảng nào dưới đây?


A.

(

−2;0

)

. B.

(

2;+

)

. C.

( )

0; 2 . D.

(

− −; 2

)

.
Lời giải


Chọn A


2


3 6


y = x + x; 0 0
2
x


y
x
=

 =   = −
 .


Bảng biến thiên:


Dựa vào bảng biến thiên,hàm số nghịch biến trên

(

−2;0

)

.
Câu 17. Đạo hàm của hàm số

(

)



1
3


3 1


y= x+ là


x – ∞ -2 0 + ∞


y' + 0 0 +


y


– ∞


5


1




(12)

A.


(

)

2
3


3
3x+1


. B.


3


1


3x+1 C.

(

)

2


3


1
3x+1


D.


(

)

2
3


3
3 3x+1



.


Lời giải
Chọn A


Ta có

(

)



(

)



2
3


2
3


3
' 3 3 1


3 1


y x


x


= + =


+ .


Câu 18. Cho hàm số y= f x

( )

có bảng biến thiên như sau:


Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:


A. 3. B. 4. C. 2. D. 1.


Lời giải
Chọn C


Dựa vào bảng biến thiên ta có


( )

( )



lim 0; lim


x→− f x = x→+ f x = + suy ra đồ thị hàm số có 1 đường tiệm cận ngang y=0.


( )

( )



2 2


lim ; lim 2


x x


f x f x


− +


→ = + → = − suy ra đồ thị hàm số có 1 đường tiệm cận đứng x= −2.



Câu 19. Cho khối lăng trụ đứng ABC A B C.    có đáy là tam giác đều và có tất cả các cạnh bằng . Thể tích


của khối lăng trụ đã cho là


A.


3
3
2
a


. B.


3
3
12
a


. C.


3
3
4
a


. D.


3
3
6


a


.


Lời giải
Chọn C


Thể tích khối lăng trụ ABC A B C.    là:


2 3


.


3 3


. .


4 4


ABC A B C ABC


a a


V   =S AA= a= (dvtt).


Câu 20. Cho tứ diện O ABC. có OA, OBOC đơi một vng góc (minh họa như hình vẽ bên). Biết
OA=OB=OC=a, khoảng cách từ điểm O đến mặt phẳng

(

ABC

)

bằng


O B



A


C


x – ∞ 2 + ∞


y' 0 + +


y


0


1



(13)

A.


3
a


. B. 3


3
a


. C. 3a. D. a 3.


Lời giải
Chọn B


Xét OAB vuông tại O, ta có: AB= OA2+OB2 = a2+a2 =a 2.


Tương tự ta có: AC=BC=a 2. Suy ra ABC là tam giác đều.


Gọi G là trọng tâm của ABC, gọi D K, lần lượt là trung điểm của ACAB.


Ta coi Olà đỉnh,

(

ABC

)

là mặt đáy của hình chóp. Ta có các mặt bên

(

OAC

) (

, OAB

) (

, OBC

)


là tam giác cân; mặt đáy

(

ABC

)

là tam giác đều và G là trọng tâm của ABC. Do đó


(

)



OGABCd O ABC

(

,

(

)

)

=OG.


Xét OAB vng cân tại OK là trung điểm của AB nên OK là đường cao của OAB


1 2


. 2


2 2 2


AB a


OK = = a =


Xét OCK vng tại O có:


2 2 2 2 2 2


2
2



1 1 1 2 1 3


3
3
3


OG OK OC a a a


a
OG


a
OG


= + = + =


 =


 =


Câu 21. Tập xác định của hàm số

(

)


2
3


1


y= x− là


A.

(

1;+

)

. B.

(

0;+

)

. C. . D. \ 1 .

 


Lời giải


Chọn A


Hàm số là hàm số lũy thừa với số mũ khơng ngun, do đó điều kiện xác định của hàm số là:


1 0 1


x−   x .


Vậy TXĐ của hàm số là:

(

1;+

)

.
Câu 22. Cho số thực dương a. Biểu thức


1
3.


a a được viết dưới dạng lũy thừa cơ số a


A.


5
6


a . B.


6
5


a . C.


2


5


a . D.


1
6
a .
Lời giải


Chọn A


Do số thực a dương nên ta có:


1 1 1 1 1 5


3. 3. 2 3 2 6


a a =a a =a + =a .


Câu 23. Giá trị lớn nhất của hàm số f x

( )

= − −x3 3x trên đoạn

−2;0

bằng


A. 4 . B. −14. C. 14 . D. −4.



(14)

Chọn C


Ta có f

( )

x = −3x2−   3 0 x .


Suy ra hàm số y= f x

( )

nghịch biến trên .
Suy ra f x

( )

f

( )

−   −2 x

2;0

.



Vậy


 2;0

( )

( )



max f x f 2 14


− = − = .


Câu 24. Hàm số nào dưới đây có đồ thị như hình vẽ sau:


A.


4
3


y=x . B. y=x−3. C.


3
4


y=x . D.


3
4
y=x− .
Lời giải


Chọn D


Từ đồ thị ta thấy hàm số nghịch biến trên tập xác định.



Hơn nữa, từ đồ thị ta thấy hàm số hàm số xác định trên

(

0;+

)

.
Do vậy, hàm số có đồ thị như hình vẽ là


3
4
y=x− .


Câu 25. Cho 2 số thực dương ,a b thỏa mãn a b2 =9. Giá trị của 2 log3a+log3b bằng ?


A.9. B. 3. C. 1. D. 2 .


Lời giải
Chọn D


Ta có log3

( )

a b2 =log 93 2 log3a+log3b=2.


Câu 26. Cho hàm số y= f x( ) có đạo hàm f x( )=x x( −  1), x . Số điểm cực trị của hàm số đã cho


A.2 . B. 0 . C. 3. D. 1.


Lời giải
Chọn A


Ta có ( ) ( 1) 0 0
1


x
f x x x



x
=


 = − =  


=


 là 2 nghiệm đơn nên f x( ) đổi dấu 2 lần, suy ra số điểm cực
trị của hàm số là 2.


Câu 27. Cho khối tứ diện OABCOA, OB, OC đơi một vng góc và OA=a, OB=2a, OC=3a
(minh họa như hình bên). Thể tích của khối tứ diện là:


A. 2a3. B. 3a3. C. 6a3. D. a3.


Lời giải
Chọn D


O x


y


1



(15)

Ta có 1 1. . . 1.6 3 3


3 2 6



OABC


V = OA OB OC= a =a .


Câu 28. Cho khối chóp tứ giác đều S ABCD. có tất cả các cạnh bằng a. Thể tích của khối chóp đã cho
bằng:


A.


3
2
3
a


. B.


3


3


a


. C.


3
2
2
a


. D.



3
2
6
a


.


Lời giải
Chọn D


Ta có: SABCD =a2


Xét tam giác vng SHC có: 2 2 2
2


SH = SCHC = a


Do đó: 1 2 3


. .


3 6


SABCD ABCD


V = S SH = a .


Câu 29. Cho hàm số y= f x

( )

có bảng biến thiên như sau



Số nghiệm phương trình 2f x

( )

− =5 0là


A. 2 . B.1. C. 0. D.3.


Lời giải
Chọn B


Ta có 2

( )

5 0

( )

5

( )

1 .
2


f x − =  f x =


Số nghiệm phương trình (1) là số giao điểm hai đường y= f x

( )

và 5.
2
y=
Dựa vào BBT của hàm số f x

( )

đã cho ta có số nghiệm phương trình (1) là 1.
Câu 30. Cho số thực a thỏa mãn 9a+9−a =23. Giá trị biểu thức 5 3 3


1 3 3


a a


a a





+ +


− − bằng



A. 1


2. B.


5
2


− . C. 3


2. D.2.


Lời giải
Chọn B


Đặt

(

)

2


3a 3 a 0 9a 9 a 2 25 5.
t= + − t  =t + − + =  =t
Ta có 5 3 3 5 10 5.


1 3 3 1 4 2


a a


a a


t
t





+ + = + = = −


− − − −


x – ∞ 2 + ∞


y' 0 + 0


y


+ ∞ 2



(16)

Câu 31. Gọi , ,A B Clà ba điểm cực trị của đồ thị hàm số y=x4−2x2+2. Diện tích của tam giác ABC
bằng


A. 4. B. 2 . C. 10. D.1.


Lời giải
Chọn D


TXĐ: D=R.


Ta có: y'=4x3−4x
0


' 0 1



1
x


y x


x


=



=  = −


 =


Từ hình vẽ, suy ra 2 2. .1 . 1
2


ABC AHC


S = S = AH HC= .


Câu 32. Cho hàm số ( )f x có bảng xét dấu của f x( ) như sau:


Số điểm cực trị của hàm số y= f x( 2−1) là


A. 1. B. 3. C. 2 . D.4 .


Lời giải


Chọn B


Ta có: y'=2 . '(x f x2−1).


x – ∞ 3 + ∞



(17)

2
2


2
0


2 0 0


' 0 1 1


'( 1) 0 2


1 3
x


x x


y x


f x x


x


=




= =


  


=  − = − 


− = = 


 − =




Bảng xét dấu


Vậy số điểm cực trị của hàm số y= f x( 2−1) là 3.


Câu 33. Cho hàm số f x

( )

. Biết rằng hàm số y= f

( )

x có đồ thị như hình vẽ. Hàm số y= f

(

2 2− x

)


đồng biến trên khoảng nào dưới đây?


A.

( )

0;1 . B.

(

−1;0

)

. C.

(

−2;0

)

. D.

( )

0; 2 .
Lời giải


Chọn A


Ta có: y= f

(

2 2− x

)

= −2.f

(

2 2− x

)

.


(

)




2 2 2 2


0 2 2 0 2 2 0 1


2 2 2 0


x x


y f x x x


x x


− = − =


 


 


=   − =  − =  =


 − =  =


 


.


Bảng xét dấu của y= f

(

2 2− x

)



x − 0 1 2 +



y − 0 + 0 − 0 +


Vậy hàm số đồng biến trên các khoảng

( )

0;1 và

(

2;+

)

.


Câu 34. Từ một miếng bìa cứng có hình tam giác đều cạnh angười ta gấp theo các đường đứt đoạn như
trong hình vẽ dưới đây để được một hình tứ diện đều. Thể tích của khối tứ diện tương ứng với
hình tứ diện đó bằng


O
1

2


− 1 2



(18)

A.


3
2
96
a


. B.


3
2
12
a


. C.



3
3
96
a


. D.


3
3
12
a


.


Lời giải
Chọn A


Ta có tứ diện đều ABCD có cạnh
2
a


.


2


3 1 3


;CD .



4 2 BCD 2 16


a a a


BM = = S = BM CD= .


2
2


2 2


2 3 3 6


3 6 2 6 6


a a a a


BH = BM = AH = ABBH =    −  =


  .


Thể tích khối tứ diện đều là:


3


1 2


.


3 96



ABCD BCD


a


V = AH S = .


Câu 35. Cho log 152 =a và log530=b. Biểu thức log 2259 bằng


A.


1
ab


ab a+ + . B. 1


ab


ab b− − . C. 1


ab


ab a− − . D. 1


ab
ab b+ +
Lời giải


Chọn C



Ta có 3 3

( )

3 3


3


3 3 3


2


log 3.5


log 15 1 log 5 1 log 5


15 log 2


log 2 log 2 log 2


log


a


a= = = = +  = +


3 3 3


5 3 3 3


3 3


log 30 1 log 2 log 5



30 1 log 2 log 5 log 5


log 5 log 5


log b



(19)

3


3 3 3 3


1 log 5 1 1 1


log 5 log 5 log 5 log 5


1


1 b a ab a a


a a a ab a


+ + −


 + =  = −   = +





+






Ta có 2


2


9 3 3 3


1


225 log 15 5 1 log 5 1 .


lo


1 1


g log 1 a ab


ab a ab a


=


= +


= + = + =


− − − −


Câu 36. Cho hình chóp S ABCD. .có đáy ABCD là hình vng cạnh bằng a.Cạnh bên SA=a và vng
góc với mặt phẳng đáy. Gọi M N P Qlần lượt là trung điểm các cạnh , , , SA SB SC SD, , , .Thể


tích của khối chóp cụt MNPQ ABCD. bằng


A.


3


6


a


. B.


3


7
24


a


. C.


3


3


a


. D.


3



4


a


Lời giải
Chọn B


Ta có 2


3
.


1
. .


3 3


S ABCD


a
V = a a =


Theo định lý tỷ số thể tích ta có :


3 3


.


. . .



.


1 1 1 1 1 1 1 1


. . . .


2 2 2 8 8 8 2 16 3 48


S MNQ


S MNQ S ABD S ABCD


S ABD


V SM SN SQ a a


V V V


V = SA SB SD= =  = = = =


Tương tự ta có


3 3


. . .


1 1 1 1


. . .



8 8 2 16 3 48


S NPQ S BCD S ABCD


a a


V = V = V = =


Ta có


3 3 3


. . . .


48 48 24


S MNPQ S MNQ S NPQ


a a a


V =V +V = + =


3 3 3


. . .


7
.



3 24 24


MNPQ ABCD S ABCD S MNPQ


a a a


V V V


 = − = − =


Câu 37. Một hộp chứa 15 cái thẻ được đánh số từ 1 đến 15, rút ngẫu nhiên ba cái thẻ. Xác suất để rút
được ba cái thẻ có tổng các số ghi trên ba thẻ là số lẻ bằng:


A. 8


65. B.


32


65. C.


16


65. D.


24
65.
Lời giải


Chọn B



Số cách rút ba thẻ trong 15 thẻ là: 3


15 455



(20)

Số cách rút ba thẻ mang số lẻ là: C83 =56 (cách).


Số cách rút ba thẻ trong đó có hai thẻ mang số chẵn và một thẻ mang số lẻ là:
2


7.8 168


C = (cách)


Số cách rút được ba cái thẻ có tổng các số ghi trên ba thẻ là số lẻ là: 56 168+ =224 (cách).
Vậy xác suất rút được ba cái thẻ có tổng các số ghi trên ba thẻ là số lẻ là: 224 32


455 =65.
Câu 38. Tổng số các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số


(

)(

)



2


2


4 4 8


2 1



x x
y


x x


− −


=


− + là:


A. 4 . B. 3. C. 2 . D. 1.


Lời giải
Chọn C


Ta có:


(

)(

)

(

(

)(

)

)

(

(

)(

)(

)

)


2


2


2 2 2


4 2 4 2 1


4 4 8


2 1 2 1 2 1



x x x x


x x


y


x x x x x x


− − − +


− −


= = =


− + − + − + .


Do lim lim 0


x→+y=x→−y= nên y=0 là đường tiệm cận ngang của đồ thị hàm số.
Do


2 1 1 1 1


4 4 4


lim , lim lim , lim lim


3 1 1



x x x x x


y y y


x x


+ + − −


→ = →− = →− + = + →− = →− + = − nên x= −1 là đường tiệm cận


đứng của đồ thị hàm số.


Vậy tổng số các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số


(

)(

)



2


2


4 4 8


2 1


x x
y


x x


− −



=


− +


là 2.


Câu 39. Từ một tấm bìa hình vng ABCD có cạnh bằng 30cm người ta gấp theo các đoạn MN PQ, sao
cho AD BC, trùng nhau để tạo thánh một hình lăng trụ bị khuyết 2 đáy như hình minh họa dưới
đây


Đề thể tích của khối lăng trụ tương ứng với hình lăng trụ tạo thành là lớn nhất thì giá trị của x
bằng


A. 8cm. B. 9cm. C. 10cm. D. 5cm.
Lời giải


Chọn C


Điều kiện 15 15
2  x


C
D


B
A


x
x



C
A


D


N Q


P
M


B
M


N


P



(21)

(Để tồn tại tam giác AMP thì 2 30 2 15
2
AM +APMPx − x x ).


(

)

2 2

(

)

(

)



1 1 30 2


. ; . . . 30 2 15. 2 15. 15


2 2 2



MPA


x


S = d A MP MP= x − − x = x− −x


 


(

)

(

)(

)

2


.


3 2


. 30. 15. 2 15. 15 30 15 2 15 15


30 15 2 75 900 3375


MPA NQD MPA


V MN S x x x x


x x x


= = − − = − −


= − + −


Cách 1: Trắc nghiệm: Tính giá trị của hàm số f x

( )

=2x3−75x2+900x−3375 tại đáp án



8; 9; 10


x= x= x= . Ta thấy f x

( )

đạt giá trị lớn nhất tại x=10 cm.


Cách 2: Xét hàm số


( )

3 2 15


2 75 900 3375, ;15


2
f x = xx + xx 


 


( )


( )



2


' 6 150 900


' 0 10, 15


f x x x


f x x x


= − +



=  = =


BBT ta thấy f x

( )

đạt giá trị lớn nhất tại x=10 cm.


Câu 40. Tập hợp tất cả các giá trị của tham số m để hàm số y=x3+3x2−mx−4 đồng biến trên khoảng

(

−2;1

)



A.

−;0

)

. B.

(

− −; 3

. C.

−3;9

. D.

 

0;9 .
Lời giải


Chọn B


Để hàm số 3 2


3 4


y=x + xmx− đồng biến trên khoảng

(

−2;1

)

thì


(

)

(

)

( )

(

)



2 2 2


2;1


' 3 6 0 2;1 3 6 , 2;1 min 3 6


x


y x x m x m x x x m x x



 −


= + −    −   +   −   +


Cách 1: Sử dụng máy tính, Mode 7, ta thấy


( )

(

)



2
2;1


min 3 6 3


x − x + x = − . Vậy m −3.
Cách 2: Lập BBT


Xét f x

( )

=3x2+6 ,x x −

(

2;1

)


( )



( )



' 6 6


' 0 1


f x x


f x x


= +



=  = −


Lập BBT, suy ra hàm số đạt giá trị nhỏ nhất tại x= −1,


( 2;1)

( )

( )



min f x f 1 3


− = − = − .


Vậy m −3.



(22)

Số nghiệm của phương trình g f x

(

( )

)

=0 là


A. 1. B. 3. C. 6 . D. 9.


Lời giải
Chọn C


Đặt

( )

3 2


, 0


f x =ax +bx + +cx d a  f

( )

x =3ax2+2bx c+ .


Theo hình vẽ có:

( )


( )


( )



( )


1 0
1 0
1 1
0 1
f
f
f
f
 =


 − =


= −

=


3 2 0


3 2 0


1
1


a b c


a b c



a b c d
d
+ + =

 − + =

  + + + = −

 =

1
0
3
1
a
b
c
d
=

 =

  = −

 =


( )

3



3 1


f x x x


 = − + .


Ta có: g x

( )

=0  −x3 5x2+2x+8


4
2
1
x
x
x
=


=
 = −

.


Suy ra: g f x

(

( )

)

=0


( )


( )


( )


4
2
1

f x
f x
f x
=


=
= −

3
3
3


3 1 4
3 1 2


3 1 1


x x
x x
x x
 − + =

− + =
 − + = −

( )


( )


( )


3

3
3


3 3 0 1


3 1 0 2


3 2 0 3


x x
x x
x x
 − − =

 − − =
+ =

Ta thấy:

( )

1 có một nghiệm,

( )

2 có ba nghiệm,

( )

3 có hai nghiệm.
Vậy g f x

(

( )

)

=0 có 6 nghiệm.


Câu 42. Cho hình chóp S ABCD. có đáy là hình chữ nhật với AB=a và 6
2
a


AD= , mặt bên SAB
tam giác đều và nằm trong mặt phẳng vng góc với mặt phẳng đáy. Góc giữa đường thẳng SB
và mặt phẳng

(

SCD

)

bằng?


A. 30 .0 B. 45 .0 C. 60 .0 D. 90 . 0



Lời giải
Chọn B
O
1
x
y
2
1

2

1


3 ( )


y= f x


1



(23)

Gọi H E, lần lượt là trung điểm của AB CD, .


Do SAB là tam giác đều có trung tuyến SH và nằm trong mặt phẳng vng góc với mặt phẳng
đáy nên SH

(

ABCD

)

.


CD HE CD

(

SHE

) (

SCD

) (

SHE

)


CD SH






 ⊥  ⊥




 .


Kẻ HKSE

(

SCD

) (

SHE

)

=SE

(

SCD

) (

SHE

)

nên HK

(

SCD

)


Có 1 2 12 12 22 42 22


3 3


HK = HE +SH = a + a = a


2
2
a
HK


 = .


Do // //

(

)

(

,

(

)

)

(

,

(

)

)

(

,

(

)

)

2


2
a


AB CDAB SCDd AB SCD =d B SCD =d H SCD =HK = .


SB

(

SCD

)

=S nên sin

(

,

(

)

)

(

,

(

)

)

2

(

,

(

)

)

450
2



d B SCD


SB SCD SB SCD


SB


= =  = .


Câu 43. Giá trị của tham số m thuộc khoảng nào dưới đây để đồ thị hàm số y=x3−3x2−9x+m cắt trục
hoành tại ba điểm phân biệt có hồnh độ lập thành cấp số cộng?


A.

(

− −; 4

)

. B.

(

−4;0

)

. C.

( )

0;5 . D.

(

5;+ 

)

.
Lời giải


Chọn D


Ta có phương trình hồnh độ giao điểm


3 2 3 2


3 9 0 3 9


xxx m+ =  − +x x + x=m (1)
Đặt

( )

3 2


3 9


f x = − +x x + x;

( )

3 2 6 9 0 1


3



x


f x x x


x
= −


 = − + + =  


=


 .


Bảng biến thiên


S



A


H



B

C




(24)

Từ bảng biến thiên suy ra phương trình (1) có 3 nghiệm phân biệt  −  5 m 27 (*).


Với điều kiện (*) thì phương trình (1) có 3 nghiệm phân biệt x x x1; 2; 3 theo thứ tự lập thành cấp
số cộng.


Áp dụng định lý Vi- ét cho phương trình x3−3x2−9x m+ =0 ta có



1 2 3


1 2 2 3 3 1


1 2 3


3


9


x x x


x x x x x x
x x x m


+ + =

+ + = −

= −

.


Laị có x x x1; 2; 3 thứ tự lập thành cấp số cộng nên có


1 3


2
2



x x


x = + ; suy ra x2 =1 hay x=1 là
nghiệm của phương trình (1)  − − + =  =1 3 9 m 0 m 11.


Thử lại, với m=11 ta có phương trình


3 2 1


3 9 11 0


1 2 3


x


x x x


x
=

− − + =  
= 


Rõ ràng các nghiệm 1 2 3;1;1 2 3− + lập thành cấp số cộng.
Vậy m= 11

(

5;+ 

)

.


Câu 44. Cho log8a+log4b=4 và
2



4 8


log a +log b=5. Giá trị của tích ab bằng


A. 29. B. 218. C. 23. D. 2 .


Lời giải
Chọn A


Từ giả thiết ta có hệ: 8 2 4


4 8


log log 4


log log 5


a b
a b
+ =


+ =

2 2
2 2
1 1


log log 4



3 2


1


log log 5


3
a b
a b
+ =

 
+ =

2
2
log 3
log 6
a
b
=

  =

3
6
2
2
a


b
 =

 
=

9
2
ab
 = .


Câu 45. Cho khối lăng trụ có tất cả các cạnh bằng a, đáy là lục giác đều và góc tạo bởi cạnh bên và mặt
đáy là 0


60 . Thể tích khối lăng trụ đó bằng



(25)

Giả sử ABCDEF A B C D E F. ' ' ' ' ' ' là hình lăng trụ đã cho. Gọi H là hình chiếu của A' lên

(

ABCDEF

)

.


Góc giữa cạnh bên AA'với mặt đáy bằng góc A AH'


Ta có sin ' ' ' 3 .


' 2


A H


A AH A H a


AA



=  =


Diện tích đáy 3 3 2
2
ABCDEF


S = a ( bằng 6 lần diện tích tam giác đều có cạnh bằng a)


Vậy thể tích khối lăng trụ là . ' 9 3.
4
ABCDEF


V =S A H= a


Câu 46. Cho hàm số f x

( )

, hàm số y= f'

( )

x liên tục trên và có đồ thị như hình vẽ bên. Bất phương
trình f

(

x+ 1

)

x+ +1 m ( m là tham số thực) nghiệm đúng với mọi x −

(

1;3

)

khi và chỉ


A. mf

( )

2 −2. B. mf

( )

0 . C. mf

( )

2 −2. D. mf

( )

0 .
Lời giải


Chọn D


Đặt u= x+1. Vì x −

(

1;3

)

 u

( )

0; 2 .


( )

( )



f u u m f u u m


  +  −  .



Xét hàm số g u

( )

= f u

( )

u với u

 

0; 2 .
Ta có g u'

( )

= f'

( )

u −1


Dựa vào độ thì ta thấy u

 

0; 2 thì f'

( )

u   1 u

 

0; 2 g u

( )

nghịch biến trên

( )

0; 2 .
A


B C


A'


H


O x


y


1
2


1




1 2


1





2



(26)

Vậy để f

(

x+ 1

)

x+ +1 m ( m là tham số thực) nghiệm đúng với mọi x −

(

1;3

)

thì


( )

( )

0; 2


f u −   u m u


 0;2

( )

( )

0

( )

0
u


m max g u g f


  = = .


Câu 47. Cho hàm số ( )f x xác định, liên tục trên R và có đồ thị như hình vẽ:


Để hàm số 2


( 1)


y= f ax +bx+ , với ,a b0có năm cực trị thì điều kiện cần và đủ là:


A.4ab28a B. b24a C. 4ab28a D. b28a


Lời giải
Chọn A


Ta có: y'=(2ax b f ax+ ). '( 2+bx+1);



2
2
2
2
2
2
2
0
2
2 0
1 0
' 0


'( 1) 0


1 1


1 0 (1)
1 1


2 0 (2)


b
x
a
b
x x
a



ax b b


ax bx


y x


a
f ax bx


ax bx
ax bx
ax bx
ax bx
 = −

= −
=
 
 
+ =
+ + =
=    = −
+ + =  
+ + = −
  + + =
 + + = 
+ + =

Để hàm số 2



( 1)


y= f ax +bx+ , với ,a b0có năm cực trị thì điều kiện cần và đủ là phương trình
' 0


y =


có 5 nghiệm đơn phân biệt


TH1: (1) có 2 nghiệm phân biệt ; ;0
2


b b


a a


 


 −


 , phương trình (2) vơ nghiệm hoặc có nghiệm kép.


2
2
2
4 0
4 8
8 0
b a



a b a
b a
 − 

  
− 



TH2: (2) có 2 nghiệm phân biệt ; ;0
2


b b


a a


 


 −


 , phương trình (1) vơ nghiệm hoặc có nghiệm kép.


2
2
2
4 0
8 4
8 0
b a


a b a


b a


 − 




  


− 


 vô lý. Vậy chọn đáp án#A.


Câu 48. Cho khối tứ diện ABCDAB=CD=5 ,a AC=BD=6 ,a AD=BC=7 .aThể tích khối tứ diện
đó bằng


A. a3 95. B. 8a3 95. C. 2a3 95. D. 4a3 95.


Lời giải


O x


y


1



(27)

Chọn C


Xét tứ diện AMNP sao cho ; ;B C Dlần lượt là trung điểm của MN NP PM; ;


Ta có 1 5 10



2


AB=CD= MN = aMN= a
Mà B là trung điểm MN nên AMAN

( )

1
Tương tự ta cũng có NP=12aAPAN

( )

2


14


MP= aAPAM

( )

3


Ta lại có 2 2 2 2 1 2 2.25 2 1.100 2 100 2

( )

4


2 2


AM +AN = AB + MN = a + a = a


( )



2 2 2 1 2 2 1 2 2


2 2.49 .196 196 5


2 2


AM +AP = AD + MP = a + a = a


( )



2 2 2 1 2 2 1 2 2



2 2.36 .144 144 6


2 2


AP +AN = AC + PN = a + a = a


Từ

( ) ( ) ( )



2 2


2 2


2


2 19
76


4 , 5 , 6 24 2 6


120 2 30


AM a


AM a


AN a AN a


AP a AM a



=


 =




 


=  =


==





Từ

( ) ( ) ( )

1 , 2 , 3 1 . . 1.2 19 .2 6 .2 30 8 3 95


6 6


AMNP


V AM AN AP a a a a


 = = =


Mà 1 2 3 95.


4


ABCD AMNP



V = V = a


Câu 49. Cho khối tứ diện ABCDAB=5;CD= 10;AC=2 2;BD=3 3;AD= 22; BC= 13.
Thể tích của khối tứ diện đó bằng


A. 20. B. 5. C. 15. D. 10.


Lời giải
Chọn B


Trong tam giác ABC ta có 2 0


cos 45


2


BAC= BAC=


Kẻ CHAB tại HDKHC tại K.



(28)

Ta có 2SABD 3 2
HD


AB


= = và 2SDHC 3


DK


HC



= =


Thể tích khối tứ diện bằng 1 1 5


3 2


DABC


V = DKHC AB =


Câu 50. Cho a b, là các số thực thỏa mãn a b 1. Biết rằng giá trị nhỏ nhất của biểu thức


2 2


loga 3logb
b


a


P a


b


= + là một số nguyên dương có hai chữ số, tổng của hai chữ số đó bằng


A. 8. B. 3. C. 1. D. 6 .


Lời giải
Chọn D



Ta có 2 2 2


loga 3logb 4 loga 3logb


b b


a a


P a a


b b


= + = +


(

)



2


1


4. 3 log 1


log


b
a


a
a



b


= + −


(

)

2


4 1


3 1


log
1 logab ab


 


= +


.


Đặt t=logab, vì a b 1 nên logaalogablog 1a hay 1 t 0.


Khi đó


(

)

2


4 1


3 1



1
P


t
t


 


= +


 


− với 0 t 1.


Xét hàm số

( )



(

)

2


4 1


3 1


1
y f t


t
t


 



= = +


 


− với t

( )

0;1 .


( )



(

)



(

)



(

)

(

)



3


2 3 2


3 2 2 3 2 3


8 3 1


8 3 3 9 3


1 . 1 . 1


t t t t t


f t



t


t t t t t


− − − + −


 = − = =


− − − .


( )

3 2 1


0 3 9 3 0


3


ft =  t − + − =  =t t t (thỏa 0 t 1).
Bảng biến thiên


a 0 1


3 1


( )



ft − 0 +


( )


f t



+


15


+


Vậy


( )0;1

( )



1


min min 15


3
P= f t = f   =





×