Tải bản đầy đủ (.pdf) (6 trang)

Đề thi Đề thi thử THPT quốc gia môn Toán học liên trường TP Vinh, Nghệ An lần 1 mã đề 120 - Học Toàn Tập

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.08 MB, 6 trang )

(1)

SỞ GD & ĐT NGHỆ AN


LIÊN TRƯỜNG THPT TP VINH

ĐỀ THI THỬ THPTQG LẦN 1

NĂM HỌC 2018 - 2019



MƠN TỐN


Thời gian làm bài: 90 phút; (50 câu trắc nghiệm)
(Thí sinh khơng được sử dụng tài liệu)


Họ, tên học sinh:... SBD: ... Mã đề 120


Câu 1: Thể tích khối cầu bán kính 6 cm bằng


A.

 

3


864 cm . B. 432

 

cm3 . C. 216

 

cm3 . D.

 

3
288 cm .


Câu 2: Thể tích khối nón có bán kính đáy R và chiều cao h


A. 1 3


3




V R h. B. V

R h2 . C. 1 2
3





V R h. D. 4 2


3




V R h.


Câu 3: Cho 3a 5, khi đó
25


log 81 bằng


A. 2a. B. 1


2a. C.


2


a. D. 2


a


.


Câu 4: Phương trình

 


2 4 6


2



5 x  x log 128 có bao nhiêu nghiệm?


A. 3 . B. 1. C. 2. D. 0 .


Câu 5: Một khối trụ có thể tích bằng 6. Nếu giữ ngun chiều cao và tăng bán kính đáy của khối trụ đó
gấp 3 lần thì thể tích của khối trụ mới bằng bao nhiêu?


A. V 54 . B. V 18. C. V 162. D. V27.


Câu 6: Đồ thị hàm số yx4x21 có bao nhiêu điểm cực trị có tung độ là số dương?


A. 3 . B. 1. C. 2. D. 0 .


Câu 7: Cho khối nón có thể tích bằng 2

a3 và bán kính đáy bằng a. Độ dài đường sinh của khối nón đã


cho bằng


A. 6a. B. a 7. C. a 5. D. a 37.


Câu 8: Giá trị
2


1
1
lim


1







x
x


x bằng


A. 2. B. 1. C. 0 . D. 2.


Câu 9: Trong không gian Oxyz, cho hai điểm A

3;1; 2

, B

2; 3;5

. Điểm M thuộc đoạn ABsao
cho MA2MB, tọa độ điểm M


A. 7; 5 8;


3 3 3




 


 . B.

1; 7;12

. C.

4;5; 9

. D.


3 17


; 5;


2 2





 


 .


Câu 10: Đạo hàm của hàm số y2020x là:
A. ' 2020


ln 2020


x


y . B. y' 2020 ln 2020 x .


C. y x.2020x1. D. y' 2020 .log 2020 x .


Câu 11: Hàm số nào sau đây nghịch biến trên R?


A. y 5x33x23x4. B. yx3x25x1.


C. y x 33x2. D. y  x3 3x1.



(2)

Số nghiệm của phương trình f

2x3

 4 0là


A. 4. B. 2. C. 3 . D. 1.


Câu 13: Cho hàm số yf x

 

có đồ thị như hình vẽ.


Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?


A.

2;2

. B.

0,5; 0,3

. C.

1,2;0,1

. D.

 

0;2 .


Câu 14: Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?


A. y  x4 x2 1. B. y  x3 3x1. C. y   x3 x 1. D. y x 33x5.


Câu 15: Với ,a b là hai số thực dương tuỳ ý, ln e .

2 a b7 5

bằng


A. 7lna5lnb. B. 2 5ln a7lnb. C. 5lna7lnb. D. 2 7ln a5lnb.


Câu 16: Cho tứ diện ABCD, hai điểm MN lần lượt trên hai cạnh ABAD sao cho 3MA MB ,


4




AD AN. Tỷ số thể tích của 2 khối đa diện ACMNBCDMN bằng


A. 1


16. B.


3


4. C.


1


9. D.


1


15.


Câu 17: Cho hàm số yf x

 

liên tục trên đoạn

3;4

và có đồ thị như hình vẽ bên dưới.


Gọi Mm lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn

3;4

. Giá trị của
3M 2m bằng


A. 0 . B. 3 . C. 3. D. 9 .


O x


2




1




1




y


3


2
1




(3)

Câu 18: Trong không gian Oxyz, cho hai điểm A

1;5; 2

B

3; 3;2

. Tọa độ trung điểm M của
đoạn thẳng ABA. M

2; 4;0

. B. M

1;1;2

. C. M

2;2;4

. D. M

4; 8;0

.


Câu 19: Cho khối chóp tứ giác đều có cạnh đáy bằng 2acạnh bên bằng a 5. Thể tích của khối chóp đã
cho bằng
A.
3
4 3
3
a


. B.


3
4 5


3


a


. C. 3


4 5a . D. 4 3a3.


Câu 20: Gọi MN lần lượt là giá trị lớn nhất và nhỏ nhất của biểu thức cos 1
2sin 4



x


A


x . Giá trị của




M N bằng A. 2


3. B.
3


4. C.
3


2. D.
1
3.


Câu 21: Cho cấp số nhân

 

un có số hạng đầu u1 2 và u454. Giá trị u2019 bằng


A. 2.32018. B. 2.22018. C. 2.32020. D. 2.22020.


Câu 22: Cho hình trụ có bán kính đáy bằng a và độ dài đường cao bằng 3a. Diện tích tồn phần của
hình trụ đã cho bằng


A. 5

a2. B. 8

a2. C. 7a2. D. 4a2.


Câu 23: Tập xác định của hàm số



2019


2 4 2020


 


y x x là:


A. (;0] [ 4; ). B. R\ 0;4

 

. C.

 

0;4 . D. (;0)(4; ).


Câu 24: Tìm họ nguyên hàm của hàm số ( ) 3f xxsinx.


A.


2
3


( )d cos


2


  


f x x x x C B.


2
3


( )d cos


2



  


f x x x x C


C. ( )d 3 2cos


f x x x x C D.

f x x( )d  3 cosx C


Câu 25: Thể tích khối chóp có diện tích đáy a2 2 và chiều cao 3a


A. V 9a3 2. B. V a 3 2. C. V a2 2. D. V 3a3 2.


Câu 26: Biết F x

 

là một nguyên hàm của hàm f x

 

cos3x và 2


2 3




  
 
 


F . Tính


9

 
 
 
F .



A. 3 2


9 6


 


  
 
 


F . B. 3 2


9 6


 


  
 
 


F . C. 3 6


9 6


 


  
 
 



F . D. 3 6


9 6
 
  
 
 
F .


Câu 27: Số nghiệm nguyên của bất phương trình: log (150,8 x 2) log0,8

13x8

là:


A. 4. B. 2. C. 3 . D. Vơ số.


Câu 28: Biết thể tích khối lập phương bằng 16 2a3, vậy cạnh của khối lập phương bằng bao nhiêu?


A. 8a 2. B. 2a 2 . C. 4a 2. D. a 2.


Câu 29: Cho hàm số yf x( ) có bảng biến thiên như sau


Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là


A. 1. B. 4. C. 2. D. 3 .



(4)

Hàm số đạt cực tiểu tại


A. x1. B. x 1. C. x5. D. x 2.


Câu 31: Biết phương trình 2018 2019



2 1 1


log 2log


2 2


 




 


 


 


x
x


x x có nghiệm duy nhất x a b  2


trong đó ;a b là những số nguyên. Khi đó a b bằng:


A. 5. B. 1. C. 2. D. 1.


Câu 32: Biết rằng giá trị lớn nhất của hàm số y x438x2120x4m trên đoạn

 

0;2 đạt giá trị nhỏ
nhất. Khi đó giá trị của tham số m bằng


A. 11. B. 12. C. 13. D. 14.



Câu 33: Cho hình cầu tâm O bán kính R5, tiếp xúc với mặt phẳng ( )P . Một hình nón trịn xoay có
đáy nằm trên ( )P , có chiều cao h15, có bán kính đáy bằng R. Hình cầu và hình nón nằm về một phía
đối với mặt phẳng ( )P . Người ta cắt hai hình đó bởi mặt phẳng ( )Q song song với ( )P và thu được hai
thiết diện có tổng diện tích là S. Gọi x là khoảng cách giữa ( )P và ( )Q , (0 x 5). Biết rằng S đạt giá
trị lớn nhất khi xa


b (phân số
a


b tối giản). Tính giá trị T a b  .




A. T23. B. T17. C. T 18. D. T 19.


Câu 34: Tìm số nguyên dương n sao cho
3


2 2 2 2 2


2018 2018 2018 2018 2018


log 2019 2 log 2019 3 log 2019 ... n logn 2019 1010 .2021 log 2019.


A. n2018. B. n2020. C. n2019 . D. n2021.


Câu 35: Cho hình chóp S ABCD. với ABCD là hình vuông cạnh 2a, SA vuông góc với mặt
(ABCD)và SA a 3. Khoảng cách giữa hai đường thẳng SDABbằng


A. 30



5
a


. B. 12


7
a


. C. 84


7
a


. D. 7


12
a


.


Câu 36: Cho các bất phương trình 2 2


5 5


log ( x 4x m ) log ( x  1) 1

 

1 và 4 x x 1 0

 

2 .
Tổng tất cả các giá trị nguyên dương của m sao cho mọi nghiệm của bất phương trình

 

2 đều là nghiệm
của bất phương trình

 

1 là


A. 21. B. 11. C. 13. D. 28.



Câu 37: Phương trình

2 3

x 

1 2a

2 3

x 4 0 có 2 nghiệm phân biệt x x1, 2 thỏa mãn
1 2log2 33


x x . Khi đó a thuộc khoảng


A. 3;
2


 


 


 . B.

0; 

. C.


3
;


2


 


 


 . D.


3
;
2



 


 


 .


Câu 38: Cho hình chóp S ABC. có đáy ABC là tam giác vuông cân tại B,


3 2


 


AB BC a ,SAB SCB· · 900. Biết khoảng cách từ A đến mặt phẳng (SBC) bằng 2a 3. Tính thể
tích mặt cầu ngoại tiếp hình chóp S ABC. .


A. 24 18a3. B. 3


6 18a . C. 3



(5)

Câu 39: Cho hàm số yf x

 

xác định trên R và hàm số yf x

 

có đồ thị như hình bên dưới.


Đặt g x

 

f x

m

. Có bao nhiêu giá trị nguyên của tham số m để hàm số g x

 

có đúng 7 điểm
cực trị?


A. 3 . B. 1. C. 2. D. Vơ số.


Câu 40: Cắt hình nón

 

N đỉnh S cho trước bởi mặt phẳng qua trục của nó, ta được một tam giác vng
cân có cạnh huyền bằng 2a 2. Biết BC là một dây cung đường trịn của đáy hình nón sao cho mặt
phẳng

SBC

tạo với mặt phẳng đáy của hình nón một góc 60 . Tính diện tích tam giác 0 SBC.



A. 2 2 2


9
a


. B. 4 2 2


9
a


. C. 4 2 2


3
a


. D. 2 2 2


3
a


.


Câu 41: Cho hình chóp S ABC. có cạnh SA vng góc với đáy, ABC là tam giác vng tại A, biết
3




AB a,

AC

4

a

, SA5a. Tìm bán kính của mặt cầu ngoại tiếp hình chóp S ABC. .


A. 5



2
a


. B. 5 2


4
a


. C. 5 2


2
a


. D. 5


4
a


.


Câu 42: Cho hàm số yf x

 

liên tục trên ¡ và có đồ thị như hình vẽ dưới đây.


Số các giá trị nguyên của tham số m khơng vượt q 5 để phương trình

 



2 1
0
8


xm  



f có hai


nghiệm phân biệt là


A. 4. B. 6. C. 5. D. 7.


Câu 43: Biết

f x x

 

d 3 cos 2x

x 5

C. Tìm khẳng định đúng trong các khẳng định sau.


A.

f

 

3 dx x3 cos 2x

x 5

C
B.

f

 

3 dx x9 cos 2x

x 5

C
C.

f

 

3 dx x3 cos 6x

x 5

C
D.

f

 

3 dx x9 cos 6x

x 5

C


Câu 44: Một khối đồ chơi gồm một khối hình trụ ( )T gắn chồng lên một
khối hình nón ( )N , lần lượt có bán kính đáy và chiều cao tương ứng là


1, , ,1 2 2


r h r h thỏa mãn r2 2 ,r h1 1 2h2 (hình vẽ). Biết rằng thể tích của
khối nón ( )N bằng 20cm3. Thể tích của tồn bộ khối đồ chơi bằng


O

x



y



1






1


3


1



2


2




(6)

A. 120cm . 3 B. 30cm3.


C. 50cm3. D. 140cm . 3


Câu 45: Tập hợp các giá trị thực của m để hàm số  3  1 2


x m


y


x m nghịch biến trên khoảng

5; 


A. [1; ). B. (1; ). C.

 

1;5 . D.

1;5 .



Câu 46: Cho hàm số f x

 

2x e2 x322xe2x, ta có

 

d 32 2 2


f x x mex nxe x pe x C. Giá trị của biểu


thức m n p  bằng


A. 2. B. 1


3. C.



13


6 . D.


7
6.


Câu 47: Cho hàm số yf x

 

có đạo hàm trên .¡ Đồ thị hàm số yf x

 

như hình vẽ bên dưới.


Số điểm cực tiểu của hàm số g x

 

2f x

 2

 

x1



x3



A. 3 . B. 1. C. 2. D. 4.


Câu 48: Bạn Nam vừa trúng tuyển đại học, vì hồn cảnh gia đình khó khăn nên được ngân hàng cho vay
vốn trong 4 năm học đại học, mỗi năm 10 triệu đồng vào đầu năm học để nạp học phí với lãi suất
7,8% /năm (mỗi lần vay cách nhau đúng 1 năm). Sau khi tốt nghiệp đại học đúng 1 tháng, hàng tháng
Nam phải trả góp cho ngân hàng số tiền là m đồng/tháng với lãi suất 0,7% /tháng trong vòng 4 năm. Số
tiền m mỗi tháng Nam cần trả cho ngân hàng gần nhất với số nào sau đây (ngân hàng tính lãi trên số dư
nợ thực tế).


A. 1.468.000 (đồng). B. 1.191.000 (đồng). C. 1.398.000 (đồng). D. 1.027.000 (đồng).


Câu 49: Trong các nghiệm

x y;

thỏa mãn bất phương trình logx22y2

2x y

1. Khi đó giá trị lớn
nhất của biểu thức T 2x y là


A. 9 . B. 9


4. C.



9


8. D.


9
2.


Câu 50: Có 3 quyển sách tốn, 4 quyển sách lí và 5 quyển sách hóa khác nhau được sắp xếp ngẫu nhiên
lên một giá sách gồm có 3 ngăn, các quyển sách được sắp dựng đứng thành một hàng dọc vào một trong
ba ngăn (mỗi ngăn đủ rộng để chứa tất cả quyển sách). Tính xác suất để khơng có bất kì hai quyển sách
tốn nào đứng cạnh nhau.


A. 37


91. B.


55


91. C.


36


91. D.


54
91.


---






×