Tải bản đầy đủ (.pdf) (6 trang)

Đáp án HSG Vật lí lớp 11 trại hè Hùng Vương 2015 - Học Toàn Tập

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (344.06 KB, 6 trang )

(1)

HƯỚNG DẪN CHẤM MÔN VẬT LÝ LỚP 11



Lưu ý: Các cách giải khác hướng dẫn chấm, nếu đúng cho điểm tối đa theo thang
điểm đã định.


Câu Nội dung Điểm


1
(4 đ)


a. (1 điểm) Dịng điện cảm ứng trong khung có chiều MNPQ.


Lực từ tác dụng lên các cạnh có phương vng góc với các cạnh và hướng
ra phía ngồi khung (hình vẽ).


1


b. (3 điểm)


Xét khung tại vị trí như hình vẽ. Ta có:
BMN = B0 (1- x) và BPQ = B0[1-(x+b)]


Suất điện động cảm ứng xuất hiện trên hai thanh MN và PQ là
MN


 = BMN.v.a ; PQ = BPQ.v.a


Dịng điện chạy trong mạch có chiều như hình vẽ và có độ lớn bằng
I = MN PQ va B( MN BPQ) v a B. . 0. .b


R R R



   


 


1


Lực từ tác dụng lên hai thanh MN và PQ có chiều như hình vẽ và có độ lớn
F1 = BPQ.I.a = BPQ


2
0. . . .
B b a v


R

F2 = BMN.I.a = BMN


2
0. . . .
B b a v


R


1


Áp dụng định luật II Niu tơn cho khung theo trục Ox, ta được:
F1 - F2 = ma = mdv



dt


2
0


( PQ MN)


B ba v dv


B B m


R dt




  


0


2 2 2 2


B b a vdt


mdv
R




  



2 2 2 2 2 2 2 2


0 0


dx mR mR


vdt dt dv dx dv


dt Bb a Bb a


 


    


Lấy tích phân 2 vế ta có:


0


0


0


2 2 2 2 2 2 2 2


0


0 0


s



v


mRv
mR


x v s


Ba b Ba b




  


1
z


Br


x


y


O x xb


y


ya


M



N


P


Q


 


 


1
Fr
2


Fr


3
Fr



(2)

Câu Nội dung Điểm
2


(4đ)


a. (2 điểm)


Từ các cơng thức của lăng kính, lấy vi phân 2 vế, với i và A là hằng số ta
có:


sini = nsinr  0 = sinrdn + ncosr dr (1)


sini/ = nsinr/  cosi/di/ = sinr/dn + ncosr/ dr/ (2)
A = r + r/ (3) dr = -dr/ (3)


D = i + i/ - A dD = di/ (4)


1


Lấy (1) x cosr/ và (2)xcosr :


n cosr cosr/ dr + sinr cosr/ dn + n cosr/cosr dr/ + sinr/cosr dn = cosi/ cosr di/ 0,5


Chú ý (3) và (4) ta được:
sin (r + r/)dn = cosi/cosr dD


hay


/
cos cos


sin


i r


n D


A


   0,5


b. Tia sáng truyền qua lăng kính có góc lệch cực tiểu Dmin thỏa mãn:



n = 2


2


m


D A


Sin
A
Sin




(5)


Với A = 600, D


m = 300  n = 2 1,414


1


Lấy vi phân (5) ta có
dn =


m m


D D



os ( )


2 2


2


A A


C d


A
Sin


 


-


2


A
os


2 2


2
2


m


D A



Sin C


A
d
A


Sin




Do đó dn


n =


1


( )


2 2


m


m


D A


Cotd DA - 1



2 2


A


Cot dA


0,5


Sai số tương đối


n
n


1 1


2 2 2 2 2


m m


m


D A D A A


Cot  DCot  CotA
Thay số n


n





15.10-3



(3)

y


x




ms
F
m s
f


ms


f


mg


N




0 Q


P


N





Câu Nội dung Điểm


3
(4 đ)


1. 2,25 điểm



Lập phương trình tọa độ của vật theo


thời gian:



*Khi

xL

thì

xtan


L


  


Phương trình chuyển động của vật theo


phương ox:



sin


" g ( ) 0


x x L


L




   

(1)




0,25



Đặt X= x - L

X"x"


(1) trở thành

'' sin


0


g


X X


L




  

(1')



Phương trình có nghiệm là

XAcos( t )

với

gsin


L



 


0,5



Suy ra:

x L Acos( t )

(2)




Khi t =0 thì x = 0 và v = x' = 0 nên suy ra

cos 0


sin 0


L AA L


  


  






 


(2) trở thành :

xL1cos

 t

L

1cost

(3)



0,5



Khi

xL

thì

(x 1) tan


L


   


Tương tự ta tìm được phương trình chuyển động của vật:


x" gsin (x 2 )L 0


L





   


0,25



PT trên có nghiệm là:

x2LBcos

t t 1

'

với



sin


g
L






Khi t = t

1

thì x = L; v = x' =

L


2
2 cos '


3


sin '


4


B L



L B L


B L






  


 


 


 




   





Do đó:

1



3


2 2 cos


4



xLLtt  


 

(4)



0,5



2. Các lực tác dụng vào vật và nêm được biểu diễn như hình vẽ


Tại mỗi thời điểm, lực ma sát trượt giữa nêm và vật có độ lớn :



. os


ms


f mg c

(5)



Điều kiện cân bằng là:

Fmsf cms os Nsin

(6)

0,25



Khi

xL

thay

xtan


L


  

vào (5)



( nêm có xu hướng trượt sang trái )



. os


ms


f mg c

=

(1cost mg) sin


Điều kiện (6) cho :

Fmsmg c. os .sin  

1 cost mg

.sin . osc


1


. os .sin . os .sin 2 . os t


2


ms


F mg c  ct mgc


  

(7)




(4)

t


3
8


T


4


T


0


2
.sin



L
T


g







1


.sin 2
2m g


ms
F


Khi

xL

thay

(x 1) tan


L


   


1



3


. os 1 2 os .sin



4


ms


fmg c   c  t t mg


    


 


 

(8)



Suy ra

1


2 3


.sin 2 . os ( )


2 4


ms


F mgc  t t 


    


 

(9)



0,5




+ Từ phương trình (3) ta thấy

AL

nên thời gian vật đi từ x = 0


đến x = L là :

1


4 2 2 .sin


T L


t


g
 


 


  



0,25



+ Từ phương trình (4) ta thấy

BL 2

nên thời gian vật đi từ x = L


đến x = 2L là :

2


8 4 4 .sin


T L


t


g


 


 


  


0,25




(5)

Câu Nội dung Điểm


Moomen quán tính của hệ với trục quay vng góc với thanh và đi qua khối
tâm của hệ là:


2
2
2
2
24
5
16
1
16
1
12
1
mL
mL
mL
mL



IG     (3)Thay (1), (3) vào (2) ta


0,5



được:



2
2
1 sin cos
3


.


2 3cos 5


G


gL


v  




 


 (4)

0,5



b. (1,5 điểm)


theo phương GA ta có:



vAcosα = vGsinα (5) (VG ở đây là tốc độ khối tâm G của hệ)
Từ (4) và (5) suy ra:






2
2
sin
3
8
sin
sin
1
.
2
3


gL


vA (6)


0,5



Đạo hàm (6) ta được









2
3
2
3
'
sin
sin
3
8
sin
1
24
16
sin
24
sin
3
cos
sin
.
3





gL

gL
vA

0,5



Cho vA' = 0 ta được α 45,40


Thay α 45,40 vào (6) ta được vA 0,82m/s.

0,5


4



(4 đ)



a. (2,5 điểm)


Gọi G là khối tâm của hệ, AG = L/4


Do không có ngoại lực tác dụng lên hệ theo phương ngang nên khối tâm G
của hệ chỉ chuyển động theo phương thẳng đứng. Trong quá trình đổ
xuống, khi vật nhỏ m chưa tách ra khỏi thanh thì vận tốc của vật nhỏ m
bằng vận tốc của đầu A của thanh. Khi vận tốc của vật m cực đại thì nó tách
ra khỏi thanh và chuyển động thẳng đều.


Xét thời điểm thanh hợp với phương ngang góc α:


khi đó tọa độ khối tâm G theo phương thẳng đứng cách mặt phẳng ngang
là: yG = sin


4


L



.


0,5



Vận tốc khối tâm G là:
vG = yG' = cos . '


4 


L


= - cos 4


4 cos
G
v
L
L
  



  (1)


0,5



Áp dụng định luật bảo toàn cơ năng cho hệ tại vị trí ban đầu và vị trí góc
lệch của thanh là α so với phương ngang:


2mg



4


L


(1- sinα) = 2m 2
2
2
2 
G
G I
v


(2)

0,5




(6)

Câu Nội dung Điểm

Câu 5



(4 đ)



a. (2,5 điểm)


Dùng mộtcuộn dây bẹt có N vịng, có điện trở R, hai đầu được nối với điện
kế xung kích G. Lồng cuộn dây bẹt ra ngồi ống dây điện dài (có diện tích
S) tại điểm giữa. Gọi B là cảm ứng từ trong lòng ống dây điện dài mà ta cần
xác định.


Từ thông qua ông dây bẹt: BS


0,5




Đột nhiên mở khóa K. Suất điện động cảm ứng xuất hiện trong ống dây bẹt:
c


d dB


N NS


dt dt




    

0,5



Dòng điện tức thời chạy qua điện kế xung kích:
ic = c NSdB


R Rdt




 

0,5



dB = - c


R R


i dt dq


NS  NS

0,5




vậy B =
0


0
q
B


R Rq


dB dq


NS NS


  




Biết R, N, S và đo được q thì ta tính được B


0,5



b.(1,5 điểm)


Coi như N khơng có sai số, ta có: B q R S


B q R S


   



  

0,5



mà S = r2 S 2 r


S r


 


 

0,5



Thay số, tính được B 4%


B







×