Tải bản đầy đủ

Điều kiện cần và đủ cho nghiệm của bài toán cân bằng vectơ qua dưới vi phân suy rộng (Luận án tiến sĩ)

✣❸■ ❍➴❈ ❚❍⑩■ ◆●❯❨➊◆

❚❘×❮◆●
✣❸■ ❍➴❈ ❙× P❍❸▼
✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖

❚❘❺◆ ❚❍➚ ▼❆■

✣■➋❯ ❑■➏◆ ❈❺◆ ❱⑨ ✣Õ ❈❍❖ ◆●❍■➏▼ ❈Õ❆
❇⑨■ ❚❖⑩◆ ❈❹◆ ❇➀◆● ❱❊❈❚❒ ◗❯❆
❉×❰■ ❱■ P❍❹◆ ❙❯❨ ❘❐◆●

▲❯❾◆ ⑩◆ ❚■➌◆ ❙➒ ❚❖⑩◆ ❍➴❈

❚❤→✐ ◆❣✉②➯♥ ✲ ✷✵✶✾


✣❸■ ❍➴❈ ❚❍⑩■ ◆●❯❨➊◆

❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼


❚❘❺◆ ❚❍➚ ▼❆■

✣■➋❯ ❑■➏◆ ❈❺◆ ❱⑨ ✣Õ ❈❍❖ ◆●❍■➏▼ ❈Õ❆
❇⑨■ ❚❖⑩◆ ❈❹◆ ❇➀◆● ❱❊❈❚❒ ◗❯❆
❉×❰■ ❱■ P❍❹◆ ❙❯❨ ❘❐◆●

◆❣➔♥❤✿ ❚♦→♥ ●✐↔✐ t➼❝❤
▼➣ sè✿ ✾✹✻✵✶✵✷

▲❯❾◆ ⑩◆ ❚■➌◆ ❙➒ ❚❖⑩◆ ❍➴❈

◆❣÷í✐ ❤÷î♥❣ ❞➝♥ ❦❤♦❛ ❤å❝✿ ●❙✳❚❙✳ ✣é ❱➠♥ ▲÷✉

❚❤→✐ ◆❣✉②➯♥ ✲ ✷✵✶✾


▼ö❝ ❧ö❝
▲í✐ ❝❛♠ ✤♦❛♥

✐✐

▲í✐ ❝↔♠ ì♥

✐✐✐

❉❛♥❤ ♠ö❝ ❦þ ❤✐➺✉ ✈➔ ❝❤ú ✈✐➳t t➢t

✐✈

▼ð ✤➛✉



✶ ❑✐➳♥ t❤ù❝ ❝ì sð



✶✳✶
✶✳✷
✶✳✸


✶✳✹

❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ✈➔ ❝→❝ tr÷í♥❣ ❤ñ♣ r✐➯♥❣
▼ët sè ❞÷î✐ ✈✐ ♣❤➙♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
P❤➨♣ ✈æ ❤÷î♥❣ ❤â❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❍➔♠ ❧ç✐ s✉② rë♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✳ ✳ ✳ ✳ ✳



✳ ✳ ✳ ✳ ✳

✶✺

✳ ✳ ✳ ✳ ✳

✷✺

✳ ✳ ✳ ✳ ✳

✷✼

✷ ✣✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì q✉❛ ❞÷î✐ ✈✐
♣❤➙♥ ▼✐❝❤❡❧✕P❡♥♦t
✸✶
✷✳✶

✣✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❝→❝ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ❍❡♥✐❣ ✤à❛
♣❤÷ì♥❣ ✈➔ ♥❣❤✐➺♠ s✐➯✉ ❤ú✉ ❤✐➺✉ ✤à❛ ♣❤÷ì♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✶✳✶

✷✳✷

✣✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ❍❡♥✐❣ ✤à❛
♣❤÷ì♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✸✷
✸✸

⑩♣ ❞ö♥❣ ❝❤♦ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì ✈➔
❜➔✐ t♦→♥ tè✐ ÷✉ ✈❡❝tì ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✹✹

✸ ✣✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥
✈❡❝tì q✉❛ ❞÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣
✺✶




✸✳✶

✣✐➲✉ ❦✐➺♥ ❝➛♥ ❋r✐t③ ❏♦❤♥ ❝❤♦ ❝→❝ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉
❝õ❛ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì ✳ ✳ ✳ ✳ ✳ ✳ ✳

✸✳✷

✺✷

✣✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❦✐➸✉ ❑❛r✉s❤✕❑✉❤♥✕❚✉❝❦❡r ❝❤♦ ♥❣❤✐➺♠
❤ú✉ ❤✐➺✉ ②➳✉ ❝õ❛ ❜➔✐ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì ✳ ✳ ✳

✺✼

✹ ✣✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❜➔✐ t♦→♥ tè✐ ÷✉ ❣✐→ trà ❦❤♦↔♥❣ q✉❛
❞÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣
✻✹
✹✳✶

❇➔✐ t♦→♥ tè✐ ÷✉ ❣✐→ trà ❦❤♦↔♥❣ ❝â r➔♥❣ ❜✉ë❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✻✺

✹✳✷

✣✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ♥❣❤✐➺♠ ▲❯✕tè✐ ÷✉ ✤à❛ ♣❤÷ì♥❣ ✳ ✳ ✳

✻✽

✹✳✸

✣è✐ ♥❣➝✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✽✵

❑➳t ❧✉➟♥ ❝❤✉♥❣

✾✶

❉❛♥❤ ♠ö❝ ❝→❝ ❝æ♥❣ tr➻♥❤ ✤➣ ❝æ♥❣ ❜è ❧✐➯♥ q✉❛♥ ✤➳♥ ❧✉➟♥ →♥ ✾✸
❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦

✾✹


▲í✐ ❝❛♠ ✤♦❛♥
▲✉➟♥ →♥ ✤÷ñ❝ ❤♦➔♥ t❤➔♥❤ ❞÷î✐ sü ❤÷î♥❣ ❞➝♥ ❝õ❛ ●❙✳❚❙✳ ✣é ❱➠♥ ▲÷✉✳
❚æ✐ ①✐♥ ❝❛♠ ✤♦❛♥ ✤➙② ❧➔ ❝æ♥❣ tr➻♥❤ ❝õ❛ r✐➯♥❣ tæ✐✳ ❈→❝ ❦➳t q✉↔ ✤÷❛ ✈➔♦
❧✉➟♥ →♥ ✤➲✉ ✤÷ñ❝ sü ✤ç♥❣ þ ❝õ❛ ✤ç♥❣ t→❝ ❣✐↔ ●❙✳❚❙✳ ✣é ❱➠♥ ▲÷✉✳ ❈→❝
❦➳t q✉↔ ❝õ❛ ❧✉➟♥ →♥ ❧➔ ♠î✐ ✈➔ ❝❤÷❛ tø♥❣ ✤÷ñ❝ ❝æ♥❣ ❜è tr♦♥❣ ❜➜t ❦ý ❝æ♥❣
tr➻♥❤ ❦❤♦❛ ❤å❝ ♥➔♦ ❦❤→❝✳ ❈→❝ t➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✤÷ñ❝ tr➼❝❤ ❞➝♥ tr✉♥❣
t❤ü❝✳
❚→❝ ❣✐↔

❚r➛♥ ❚❤à ▼❛✐

✐✐


ớ ỡ
ữủ tỹ t rữớ ồ ữ ồ
t ữợ sỹ ữợ ồ ừ ộ
ữ ữủ tọ ỏ t ỡ t s s
t tợ ữớ t ừ t t t ữợ
ổ ở t tr sốt q tr ồ t ự
ụ tr trồ ỡ rữớ ồ
ữ ồ ừ ũ
t ổ t t ồ tốt t tổ ồ
t ự õ t ữủ tọ ỏ ỡ
tợ ồ ỡ ở ổ ừ trữớ
ồ t tr ồ
ổ t t ủ tổ õ t ồ t t

ố ũ t t ỡ ỗ
ự s ổ ở ú ù tổ
tr sốt q tr ồ t ự t


r




❉❛♥❤ ♠ö❝ ❦þ ❤✐➺✉ ✈➔ ❝❤ú ✈✐➳t t➢t
X∗

❑❤æ♥❣ ❣✐❛♥ tæ♣æ ✤è✐ ♥❣➝✉ ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ X

Q∗

◆â♥ ✤é✐ ♥❣➝✉ ❝õ❛ ♥â♥ Q

Q#

❚ü❛ ♣❤➛♥ tr♦♥❣ ❝õ❛ Q∗

x∗ , x

●✐→ trà ❝õ❛ x∗ ∈ X ∗ t↕✐ x ∈ X

(CQ)

✣✐➲✉ ❦✐➺♥ ❝❤➼♥❤ q✉②

(M F CQ)

✣✐➲✉ ❦✐➺♥ ❝❤➼♥❤ q✉② ❦✐➸✉ ▼❛♥❣❛s❛r✐❛♥✕❋r♦♠♦✈✐t③

(SM F CQ) ✣✐➲✉ ❦✐➺♥ ❝❤➼♥❤ q✉② ❦✐➸✉ ▼❛♥❣❛s❛r✐❛♥✕❋r♦♠♦✈✐t③ ♠↕♥❤ ❤ì♥
f 0 (x; v)

✣↕♦ ❤➔♠ ❈❧❛r❦❡ ❝õ❛ f t↕✐ x t❤❡♦ ♣❤÷ì♥❣ v

∂ C f (x)

❉÷î✐ ✈✐ ♣❤➙♥ ❈❧❛r❦❡ ❝õ❛ f t↕✐ x

∇f (x)

✣↕♦ ❤➔♠ ❋r➨❝❤❡t ❝õ❛ f t↕✐ x

∇G f (x)

✣↕♦ ❤➔♠ ●➙t❡❛✉① ❝õ❛ f t↕✐ x

fd− (x, υ)

✣↕♦ ❤➔♠ ❞÷î✐ ❉✐♥✐ ❝õ❛ ❤➔♠ f t❤❡♦ ♣❤÷ì♥❣ υ

fd+ (x, υ)

✣↕♦ ❤➔♠ tr➯♥ ❉✐♥✐ ❝õ❛ ❤➔♠ f t❤❡♦ ♣❤÷ì♥❣ υ

f ♦ (x; υ)

✣↕♦ ❤➔♠ ▼✐❝❤❡❧✕P❡♥♦t ❝õ❛ ❤➔♠ f t❤❡♦ ♣❤÷ì♥❣ υ

∂ M P f (x)

❉÷î✐ ✈✐ ♣❤➙♥ ▼✐❝❤❡❧✕P❡♥♦t ❝õ❛ f t↕✐ x

∂ ∗ f (x)

❉÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣ tr➯♥ ❝õ❛ ❤➔♠ f t↕✐ x

∂∗ f (x)

❉÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣ ❞÷î✐ ❝õ❛ ❤➔♠ f t↕✐ x

∂f (x)

❉÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣ ❝õ❛ ❤➔♠ f t↕✐ x

∂C f (x)

❉÷î✐ ✈✐ ♣❤➙♥ ❝õ❛ ❤➔♠ ❧ç✐ f t↕✐ x

✐✈


NC (x)

◆â♥ ♣❤→♣ t✉②➳♥ ❝õ❛ C t↕✐ x ∈ C

T (C; x)

◆â♥ t✐➳♣ t✉②➳♥ ❝õ❛ C t↕✐ x

✭❱❊P✮

❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ❦❤æ♥❣ r➔♥❣ ❜✉ë❝

✭❈❱❊P✮

❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ❝â r➔♥❣ ❜✉ë❝

✭❈❱❱■✮

❇➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì ❝â r➔♥❣ ❜✉ë❝

✭❈❱❖P✮

❇➔✐ t♦→♥ tè✐ ÷✉ ✈❡❝tì ❝â r➔♥❣ ❜✉ë❝

✭❈■❖P✮

❇➔✐ t♦→♥ tè✐ ÷✉ ❣✐→ trà ❦❤♦↔♥❣ ❝â r➔♥❣ ❜✉ë❝

✭❉❈■❖P✶✮ ❇➔✐ t♦→♥ ✤è✐ ♥❣➝✉ ❦✐➸✉ ▼♦♥❞✕❲❡✐r
✭❉❈■❖P✷✮ ❇➔✐ t♦→♥ ✤è✐ ♥❣➝✉ ❦✐➸✉ ❲♦❧❢❡

L(X, Y )

❑❤æ♥❣ ❣✐❛♥ ❝→❝ →♥❤ ①↕ t✉②➳♥ t➼♥❤ ❧✐➯♥ tö❝ tø X ✈➔♦ Y

Rn+

❖rt❤❛♥t ❞÷ì♥❣ tr♦♥❣ Rn

Rn++

P❤➛♥ tr♦♥❣ ❝õ❛ Rn+

T

❚➟♣ t➜t ❝↔ ❝→❝ ❦❤♦↔♥❣ ✤â♥❣ ✈➔ ❜à ❝❤➦♥ tr♦♥❣ R

▲❯

▲♦✇❡r✲✉♣♣❡r

❞♦♠F

▼✐➲♥ ❤ú✉ ❤✐➺✉ ❝õ❛ F

t✳÷✳✱

t÷ì♥❣ ù♥❣

✐♥tC

P❤➛♥ tr♦♥❣ ❝õ❛ t➟♣ C



❱î✐ ♠å✐



❚ç♥ t↕✐

❝♦♥✈✭❆✮

❇❛♦ ❧ç✐ ❝õ❛ t➟♣ ❆

❝♦♥✈✭❆✮

❇❛♦ ❧ç✐ ✤â♥❣ ②➳✉✯ ❝õ❛ t➟♣ ❆

❝❧✭❆✮

❚➟♣ ✤â♥❣ ②➳✉✯ ❝õ❛ t➟♣ ❆

❝♦♥❡✭❆✮

◆â♥ s✐♥❤ ❜ð✐ t➟♣ ❆




ừ t tt ớ số ữớ ỵ tt
t ỹ tr t tr tứ ỳ sợ t ừ t ồ
ợ t ỹ tr ữủ ự ỗ ợ t ừ
t ờ ợ t tố ữ ợ
t tố ữ q t ồ ự tố ữ
t ừ t ờ t t q
ổ t ữợ ữỡ tr r ự t
tố ữ t tố ữ t q
ỵ ỹ Ptr q t tỷ r ỵ tt
tố ữ ữợ ổ ỳ t ừ ts
t r ớ õ ữủ t q õ
ữỡ tr r ỵ ỹ Ptr q t
tỷ r
ỵ tt tố ữ õ t tr tứ t tố ữ ổ õ
r ở t tố ữ õ r ở tứ t tố ữ ỡ
ử t t tố ữ ử t tứ t tố ữ trỡ
t tố ữ ổ trỡ ố s tt

st

ss ừ r ởt ữợ t tr ởt
ợ ừ t ổ trỡ tố ữ ổ trỡ
ừ t ồ tt t t tự
ữủ t t ở sỹ ỳ
ừ t t ổ t tự




✈❡❝tì ❤➜♣ ❞➝♥ ❜ð✐ ♥❤ú♥❣ →♣ ❞ö♥❣ ❝õ❛ ♥â tr♦♥❣ tè✐ ÷✉ ✈❡❝tì ✈➔ ❝→❝ ❜➔✐
t♦→♥ ❝➙♥ ❜➡♥❣ ♠↕♥❣ ❣✐❛♦ t❤æ♥❣ ✭❬✶✽❪✮✳ ❇➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥
tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ✈æ ❤↕♥ ❝❤✐➲✉ ✈➔ ❝→❝ ù♥❣ ❞ö♥❣ ❝õ❛ ♥â ✤÷ñ❝ tr➻♥❤ ❜➔②
tr♦♥❣ ❝✉è♥ s→❝❤ ✧❆♥

■♥tr♦❞✉t✐♦♥ t♦ ❱❛r✐❛t✐♦♥❛❧ ■♥❡q✉❛❧✐t✐❡s ❛♥❞ ❚❤❡✐r

❆♣♣❧✐❝❛t✐♦♥s✧ ❝õ❛ ❉✳ ❑✐♥❞❡r❧❡❤r❡r ✈➔ ●✳ ❙t❛♠♣❛❝❤✐❛ ❬✸✺❪✳

❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✭❡q✉✐❧✐❜r✐✉♠ ♣r♦❜❧❡♠✮ ✤÷ñ❝ ❊✳ ❇❧✉♠ ✈➔ ❲✳ ❖❡tt❧✐
❬✶✵❪ ✤÷❛ r❛ ❧➛♥ ✤➛✉ t✐➯♥ ✈➔♦ ♥➠♠ ✶✾✾✹✱ ✈➔ ♥❤❛♥❤ ❝❤â♥❣ ❤➜♣ ❞➝♥ ♥❤✐➲✉
♥❤➔ t♦→♥ ❤å❝ ♥❣❤✐➯♥ ❝ù✉ ❞♦ ♣❤↕♠ ✈✐ ù♥❣ ❞ö♥❣ rë♥❣ ❧î♥ ❝õ❛ ♥â✳ ❇➔✐ t♦→♥
❝➙♥ ❜➡♥❣ ✈❡❝tì ✤â♥❣ ♠ët ✈❛✐ trá q✉❛♥ trå♥❣ tr♦♥❣ ❣✐↔✐ t➼❝❤ ♣❤✐ t✉②➳♥✱
♥â ❝❤♦ t❛ ♠ët ♠æ ❤➻♥❤ t♦→♥ ❤å❝ ❤ñ♣ ♥❤➜t ❜❛♦ ❣ç♠ ♥❤✐➲✉ ❜➔✐ t♦→♥ ❦❤→❝
♥❤❛✉ ♥❤÷✿ ❇➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì❀ ❇➔✐ t♦→♥ tè✐ ÷✉
✈❡❝tì❀ ❇➔✐ t♦→♥ ✤✐➸♠ ❜➜t ✤ë♥❣❀ ❇➔✐ t♦→♥ ❜ò ✈❡❝tì❀ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣
◆❛s❤ ✈❡❝tì✱✳✳✳✳ ❈→❝ ❧➽♥❤ ✈ü❝ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ❜❛♦
❣ç♠✿ ✣✐➲✉ ❦✐➺♥ tè✐ ÷✉❀ ❙ü tç♥ t↕✐ ♥❣❤✐➺♠❀ ❚❤✉➟t t♦→♥❀ ❚➼♥❤ ❝❤➜t t➟♣
♥❣❤✐➺♠❀ ❚➼♥❤ ê♥ ✤à♥❤ ♥❣❤✐➺♠❀ ✣ë ♥❤↕② ♥❣❤✐➺♠✱✳ ✳ ✳
❚r♦♥❣ ♥❤ú♥❣ ♥➠♠ ❣➛♥ ✤➙②✱ ♥❤✐➲✉ ♥❣❤✐➯♥ ❝ù✉ tr♦♥❣ ❣✐↔✐ t➼❝❤ ❦❤æ♥❣
trì♥ ✤➣ t➟♣ tr✉♥❣ ♣❤→t tr✐➸♥ ❝→❝ ❧♦↕✐ ❞÷î✐ ✈✐ ♣❤➙♥ ❦❤→❝ ♥❤❛✉✳ ❈→❝ ❞÷î✐
✈✐ ♣❤➙♥ ❧➔ ♥❤ú♥❣ ❝æ♥❣ ❝ö tèt ✤➸ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❜➔✐
t♦→♥ tè✐ ÷✉ ✈î✐ ❝→❝ ❤➔♠ ❦❤æ♥❣ trì♥✳ ❈→❝ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❝→❝ ❜➔✐
t♦→♥ tè✐ ÷✉ ✈î✐ ❝→❝ ❞ú ❧✐➺✉ ❦❤æ♥❣ trì♥ ✤➣ ✈➔ ✤❛♥❣ ♣❤→t tr✐➸♥ ♠↕♥❤ ♠➩
q✉❛ ♥❣æ♥ ♥❣ú ❞÷î✐ ✈✐ ♣❤➙♥ ❤➔♠ ❧ç✐✱ ❝→❝ ❞÷î✐ ✈✐ ♣❤➙♥ ❋✳❍✳❈❧❛r❦❡ ❬✶✶❪✱
P✳ ▼✐❝❤❡❧ ✈➔ ❏✳P✳ P❡♥♦t ❬✺✵❪✱ ❇✳❙✳ ▼♦r❞✉❦❤♦✈✐❝❤ ❬✺✶❪✱ ❏✳❙✳ ❚r❡✐♠❛♥ ❬✻✹❪
✈➔ ❞÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣ tr♦♥❣ ❬✸✶❪✳ ❑❤→✐ ♥✐➺♠ ❞÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣
✭❝♦♥✈❡①✐❢✐❝❛t♦r✮ ❧➔ ♠ët ❝æ♥❣ ❝ö tèt ✤➸ t❤✐➳t ❧➟♣ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❦❤æ♥❣
trì♥✳ ❑❤→✐ ♥✐➺♠ ❞÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣ ❧ç✐✱ ❝♦♠♣❛❝t ❧➛♥ ✤➛✉ t✐➯♥ ✤÷ñ❝
✤÷❛ r❛ ❜ð✐ ❱✳❋✳ ❉❡♠②❛♥♦✈ ❬✶✹❪✳ ❏❡②❛❦✉♠❛r ✈➔ ▲✉❝ ✤➣ ✤÷❛ r❛ ❦❤→✐ ♥✐➺♠
❞÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣ ✤â♥❣✱ ❦❤æ♥❣ ❧ç✐ ❝❤♦ ❤➔♠ ✈æ ❤÷î♥❣ tr♦♥❣ ❬✸✶❪ ✈➔
❏❛❝♦❜✐❛♥ ①➜♣ ①➾ ❝❤♦ ❤➔♠ ✈❡❝tì tr♦♥❣ ❬✸✷❪✳ ❑❤→✐ ♥✐➺♠ ❞÷î✐ ✈✐ ♣❤➙♥ s✉②
rë♥❣ ❧➔ tê♥❣ q✉→t ❤â❛ ♠ët sè ❦❤→✐ ♥✐➺♠ ❞÷î✐ ✈✐ ♣❤➙♥ ✤➣ ❜✐➳t ♥❤÷ ❝→❝
❞÷î✐ ✈✐ ♣❤➙♥ ❈❧❛r❦❡✱ ▼✐❝❤❡❧✕P❡♥♦t✱ ▼♦r❞✉❦❤♦✈✐❝❤✱ ❚r❡✐♠❛♥✱✳ ✳ ✳ ✳ ▼ët sè


❝→❝ ♥❤➔ ❦❤♦❛ ❤å❝ ❱✐➺t ◆❛♠ ✤➣ ❝â ♥❤ú♥❣ ✤â♥❣ ❣â♣ ✤→♥❣ ❦➸ tr♦♥❣ ✈✐➺❝
♥❣❤✐➯♥ ❝ù✉ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ✈➔ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥
♥❤÷ ❝→❝ ❣✐→♦ s÷ ❍✳ ❚ö②✱ ❉✳❚✳ ▲ö❝✱ P✳◗✳ ❑❤→♥❤✱ P✳❍✳ ❙→❝❤✱ ❉✳❱✳ ▲÷✉✱
▲✳❉✳ ▼÷✉✱ ◆✳❉✳ ❨➯♥ ✈➔ ♥❤✐➲✉ ❣✐→♦ s÷ ❦❤→❝ ✭①❡♠ ❬✸✶❪✱ ❬✸✷❪✱ ❬✸✻❪✕❬✹✻❪✱ ❬✺✹❪✱
❬✻✶❪✕ ❬✼✶❪✮✳
✣✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ✈➔ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣
t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì ✤➣ ✤÷ñ❝ ♥❤✐➲✉ t→❝ ❣✐↔ q✉❛♥ t➙♠ ♥❣❤✐➯♥ ❝ù✉ ✭①❡♠
❬✶✵❪✕❬✶✸❪✱ ❬✶✻❪✕❬✷✹❪✱ ❬✷✻❪✱ ❬✷✽❪✱ ❬✸✺❪✕❬✹✾❪✱ ❬✺✷❪✱ ❬✺✹❪✕❬✺✻❪✱ ❬✻✶❪✱ ❬✻✷❪✱ ❬✻✺❪✱ ❬✻✼❪✕
❬✼✶❪✮✳ ❋✳ ●✐❛♥♥❡ss✐✱ ●✳ ▼❛str♦❡♥✐ ✈➔ ▲✳ P❡❧❧❡❣r✐♥✐ ❬✶✽❪ ✤➣ t❤✐➳t ❧➟♣ ❝→❝
✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì tr♦♥❣ ❦❤æ♥❣
❣✐❛♥ ❤ú✉ ❤↕♥ ❝❤✐➲✉✳ ❏✳ ▼♦r❣❛♥ ✈➔ ▼✳ ❘♦♠❛♥✐❡❧❧♦ ❬✺✷❪ ✤➣ t❤✐➳t ❧➟♣ ❝→❝
✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❦✐➸✉ ❑✉❤♥✕❚✉❝❦❡r ❝❤♦ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ tü❛ ❜✐➳♥
♣❤➙♥ s✉② rë♥❣ ✈❡❝tì tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❍✐❧❜❡rt✳ ❈→❝ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦

ε✲♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥
❇❛♥❛❝❤ ✤➣ ✤÷ñ❝ ❳✳ ◗✳ ❨❛♥❣ ✈➔ ❳✳ ❨✳ ❩❡♥❣ ❬✼✵❪ t❤✐➳t ❧➟♣✳ ❈→❝ ✤✐➲✉ ❦✐➺♥
tè✐ ÷✉ tr♦♥❣ ❬✻✺❪✱ ❬✻✽❪ ✤÷ñ❝ ❝❤ù♥❣ ♠✐♥❤ ❜➡♥❣ ❝→❝❤ t❤✐➳t ❧➟♣ sü t÷ì♥❣
✤÷ì♥❣ ❣✐ú❛ ❜➔✐ t♦→♥ tè✐ ÷✉ ✈❡❝tì ✈➔ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥
✈❡❝tì✳ ✣➣ ❝â r➜t ♥❤✐➲✉ ❝æ♥❣ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ❣✐↔✐ q✉②➳t ❝→❝ ✈➜♥ ✤➲ tç♥
t↕✐ ♥❣❤✐➺♠ ✈➔ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❝→❝ ❧♦↕✐ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥
❜➡♥❣ ✈❡❝tì✳ ❳✳ ❍✳ ●♦♥❣ ❬✷✸❪ ✤➣ t❤✐➳t ❧➟♣ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❞÷î✐ ♥❣æ♥ ♥❣ú
❞÷î✐ ✈✐ ♣❤➙♥ ❈❧❛r❦❡ ✈➔ ❞÷î✐ ✈✐ ♣❤➙♥ ①➜♣ ①➾ ❝❤♦ ❝→❝ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉
②➳✉✱ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ❍❡♥✐❣✱ ♥❣❤✐➺♠ s✐➯✉ ❤ú✉ ❤✐➺✉ ✈➔ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉
t♦➔♥ ❝ö❝ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ✈î✐ r➔♥❣ ❜✉ë❝ t➟♣✳ ❳✳ ❍✳ ●♦♥❣ ❬✷✹❪
✤➣ ❝❤ù♥❣ ♠✐♥❤ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❝➛♥ ✈➔ ❝→❝ ✤✐➲✉ ❦✐➺♥ ✤õ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉
❤✐➺✉ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ❝â r➔♥❣ ❜✉ë❝ ♥â♥ ✈î✐ ❝→❝ ❤➔♠ ❦❤↔ ✈✐
❋r➨❝❤❡t✳ ❳✳ ❍✳ ●♦♥❣ ❬✷✷❪ ✤➣ t❤✐➳t ❧➟♣ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❝➛♥ ✈➔ ✤õ ❝❤♦ ♥❣❤✐➺♠
❤ú✉ ❤✐➺✉ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ❧ç✐ ❝â r➔♥❣ ❜✉ë❝ ♥â♥ ✈î✐ ✤✐➲✉ ❦✐➺♥
❝❤➼♥❤ q✉② ❙❧❛t❡r✳ ❳✳ ❳✳ ▲♦♥❣ ✈➔ ❝→❝ ❝ë♥❣ sü ❬✹✽❪ ✤➣ ❝❤ù♥❣ ♠✐♥❤ ❝→❝ ✤✐➲✉
❦✐➺♥ tè✐ ÷✉ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ❍❡♥✐❣ ✈➔ ♥❣❤✐➺♠ s✐➯✉ ❤ú✉ ❤✐➺✉ ❝õ❛
❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ❝â r➔♥❣ ❜✉ë❝ ♥â♥✱ r➔♥❣ ❜✉ë❝ t➟♣ ✈î✐ ❝→❝ ❤➔♠


❦✐➸✉ C ✲❞÷î✐ ❣➛♥ ❧ç✐ ✭♥❡❛r❧② C ✲s✉❜❝♦♥✈❡①❧✐❦❡✮✳ ❈❤ó þ r➡♥❣✱ ❞÷î✐ ✈✐ ♣❤➙♥
▼✐❝❤❡❧✕P❡♥♦t ❧➔ ♠ët ❞÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣✳ ❉♦ ✤â✱ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ❝→❝
✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ❍❡♥✐❣ ✈➔ s✐➯✉ ❤ú✉ ❤✐➺✉ ❝õ❛ ❜➔✐
t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ❝â r➔♥❣ ❜✉ë❝ q✉❛ ❞÷î✐ ✈✐ ♣❤➙♥ ▼✐❝❤❡❧✕P❡♥♦t ❧➔ ♠ët
✈➜♥ ✤➲ ❝➛♥ t❤✐➳t ✈➔ ✤➙② ❧➔ ♠ët ♥ë✐ ❞✉♥❣ ✤÷ñ❝ ♥❣❤✐➯♥ ❝ù✉ tr♦♥❣ ❧✉➟♥ →♥✳
❨✳ ❋❡♥❣ ✈➔ ◗✳ ◗✉✐ ❬✶✻❪ ♥❣❤✐➯♥ ❝ù✉ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❜➔✐ t♦→♥ ❝➙♥
❜➡♥❣ ✈❡❝tì ❝â r➔♥❣ ❜✉ë❝ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ❉✳ ❱✳ ▲✉✉ ✈➔ ❉✳ ❉✳
❍❛♥❣ ❬✹✶❪ ✤➣ ❞➝♥ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❝→❝ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉✱ ♥❣❤✐➺♠
❤ú✉ ❤✐➺✉✱ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ t♦➔♥ ❝ö❝ ❝õ❛ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥
♣❤➙♥ ✈❡❝tì ❝→❝ r➔♥❣ ❜✉ë❝ ✤➥♥❣ t❤ù❝✱ ❜➜t ✤➥♥❣ t❤ù❝ ✈➔ r➔♥❣ ❜✉ë❝ t➟♣
✈î✐ ❝→❝ ❤➔♠ ▲✐♣s❝❤✐t③ ✤à❛ ♣❤÷ì♥❣ q✉❛ ❞÷î✐ ✈✐ ♣❤➙♥ ❈❧❛r❦❡✱ ❞÷î✐ ✈✐ ♣❤➙♥
▼✐❝❤❡❧✲P❡♥♦t✳ ❉✳ ❱✳ ▲✉✉ ✈➔ ❉✳ ❉✳ ❍❛♥❣ ❬✹✸❪ ✤➣ ♥❣❤✐➯♥ ❝ù✉ ✤✐➲✉ ❦✐➺♥
tè✐ ÷✉ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ❞÷î✐ ♥❣æ♥ ♥❣ú
♣❤➛♥ tr♦♥❣ tü❛ t÷ì♥❣ ✤è✐ ✭q✉❛s✐r❡❧❛t✐✈❡ ✐♥t❡r✐♦r✮✳ ❉✳ ❱✳ ▲✉✉ ✈➔ ❉✳ ❉✳
❍❛♥❣ ❬✹✹❪ ❝❤ù♥❣ ♠✐♥❤ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❝➛♥ ✈➔ ❝→❝ ✤✐➲✉ ❦✐➺♥ ✤õ tè✐ ÷✉ ❝❤♦
♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈î✐ r➔♥❣ ❜✉ë❝ ❝➙♥ ❜➡♥❣
q✉❛ ❞÷î✐ ✈✐ ♣❤➙♥ ❈❧❛r❦❡✳ ❉✳ ❱✳ ▲✉✉ ❬✸✽❪ ✤➣ t❤✐➳t ❧➟♣ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❋r✐t③
❏♦❤♥ ✈➔ ❑❛r✉s❤✕❑✉❤♥✕❚✉❝❦❡r ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥
❜➡♥❣ ✈❡❝tì tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ q✉❛ ❞÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣✱ tr♦♥❣
✤â r➔♥❣ ❜✉ë❝ ✤➥♥❣ t❤ù❝ ❦❤æ♥❣ ♥❤➜t t❤✐➳t ❦❤↔ ✈✐ ❋r➨❝❤❡t✳ ❆✳ ■✉s❡♠ ✈➔ ❋✳
▲❛r❛ ❬✷✽❪ ✤➣ ✤÷❛ ✈➔♦ ❧î♣ ❤➔♠ t✐➺♠ ❝➟♥ ✈➔ ❝❤ù♥❣ ♠✐♥❤ ❝→❝ ✤✐➲✉ ❦✐➺♥ tè✐
÷✉ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ✈➔ ❤ú✉ ❤✐➺✉ ②➳✉ ❝❤♦ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì
❦❤æ♥❣ ❧ç✐ ✈➔ →♣ ❞ö♥❣ ❝❤♦ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ t❤÷ì♥❣✳ ❈❤ó þ r➡♥❣✱ ❜➔✐
t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì ❧➔ ♠ët tr÷í♥❣ ❤ñ♣ r✐➯♥❣ ❝õ❛ ❜➔✐
t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì✳ ❉♦ ✤â✱ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦
♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉ ❝õ❛ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì ❦❤æ♥❣
trì♥ ❝â r➔♥❣ ❜✉ë❝ ♥â♥✱ r➔♥❣ ❜✉ë❝ ✤➥♥❣ t❤ù❝ ✈➔ r➔♥❣ ❜✉ë❝ t➟♣ q✉❛ ❞÷î✐
✈✐ ♣❤➙♥ s✉② rë♥❣ ❧➔ ♠ët ✈➜♥ ✤➲ ❝➛♥ t❤✐➳t ✈➔ ✤➙② ❧➔ ♠ët ♥ë✐ ❞✉♥❣ ✤÷ñ❝
♥❣❤✐➯♥ ❝ù✉ tr♦♥❣ ❧✉➟♥ →♥✳
❇➔✐ t♦→♥ tè✐ ÷✉ ✤❛ ♠ö❝ t✐➯✉ ❧➔ ♠ët tr÷í♥❣ ❤ñ♣ q✉❛♥ trå♥❣ ❝õ❛ ❜➔✐


t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì✳ ❚r♦♥❣ ♥❤ú♥❣ ♥➠♠ ❣➛♥ ✤➙②✱ ❝→❝ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉
❝❤♦ ❜➔✐ t♦→♥ tè✐ ÷✉ ❦❤æ♥❣ trì♥ ✤➣ ✤÷ñ❝ ♥❤✐➲✉ t→❝ ❣✐↔ ♥❣❤✐➯♥ ❝ù✉ q✉❛
❝→❝ ❞÷î✐ ✈✐ ♣❤➙♥ ❦❤→❝ ♥❤❛✉ ✈➔ ✤↕t ✤÷ñ❝ ❝→❝ ❦➳t q✉↔ ✤➭♣ ✈➔ s➙✉ s➢❝✳ ❑❤✐
❝→❝ ❤➺ sè ❝õ❛ ❤➔♠ ♠ö❝ t✐➯✉ ✈➔ ❝→❝ ❤➔♠ r➔♥❣ ❜✉ë❝ ♥❤➟♥ ❣✐→ trà ❦❤♦↔♥❣✱
t❛ ♥❤➟♥ ✤÷ñ❝ ❝→❝ ❜➔✐ t♦→♥ tè✐ ÷✉ ❣✐→ trà ❦❤♦↔♥❣✳ ❈→❝ ❜➔✐ t♦→♥ tè✐ ÷✉
❣✐→ trà ❦❤♦↔♥❣ ❝❤♦ t❛ sü ❧ü❛ ❝❤å♥ ❦❤æ♥❣ ❝❤➢❝ ❝❤➢♥ tr♦♥❣ tè✐ ÷✉✳ ✣✐➲✉
❦✐➺♥ tè✐ ÷✉ ✈➔ ✤è✐ ♥❣➝✉ ❝õ❛ ❜➔✐ t♦→♥ tè✐ ÷✉ ♣❤✐ t✉②➳♥ ❣✐→ trà ❦❤♦↔♥❣
✤÷ñ❝ ♥❤✐➲✉ t→❝ ❣✐↔ q✉❛♥ t➙♠ ♥❣❤✐➯♥ ❝ù✉ ✭①❡♠ ❬✼❪✱ ❬✽❪✱ ❬✷✾❪✱ ❬✸✵❪✱ ❬✺✸❪✱
❬✻✻❪✮✳ ❍✳ ❈✳ ❲✉ ❬✻✻❪ ✤➣ ❞➝♥ ❝→❝ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❑❛r✉s❤✕❑✉❤♥✕❚✉❝❦❡r
❝❤♦ ❜➔✐ t♦→♥ tè✐ ÷✉ ♣❤✐ t✉②➳♥ ❣✐→ trà ❦❤♦↔♥❣ ❦❤↔ ✈✐ ✈î✐ ❝→❝ r➔♥❣ ❜✉ë❝
❜➜t ✤➥♥❣ t❤ù❝ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❤ú✉ ❤↕♥ ❝❤✐➲✉✳ ❆✳ ❑✳ ❇❤✉r❥❡❡ ✈➔ ●✳
P❛♥❞❛ ❬✼✱ ✽❪ ✤➣ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ✈➔ t❤✐➳t ❧➟♣ ❝→❝ ✤à♥❤
❧þ ✤è✐ ♥❣➝✉ ❝❤♦ ❜➔✐ t♦→♥ q✉② ❤♦↕❝❤ t❤÷ì♥❣ ✤❛ ♠ö❝ t✐➯✉ ❣✐→ trà ❦❤♦↔♥❣✳
❆✳ ❏❛②s✇❛❧✱ ■✳ ❙t❛♥❝✉✕▼✐♥❛s✐❛♥ ✈➔ ❏✳ ❇❛♥❡r❥❡❡ ❬✸✵❪ ✤➣ t❤✐➳t ❧➟♣ ❝→❝ ✤✐➲✉
❦✐➺♥ tè✐ ÷✉ ✈➔ ❝→❝ ✤à♥❤ ❧þ ✤è✐ ♥❣➝✉ ❝❤♦ ❜➔✐ t♦→♥ tè✐ ÷✉ ♣❤✐ t✉②➳♥ ❣✐→
trà ❦❤♦↔♥❣ ✈î✐ r➔♥❣ ❜✉ë❝ ❜➜t ✤➥♥❣ t❤ù❝ ✈➔ r➔♥❣ ❜✉ë❝ t➟♣ q✉❛ ❞÷î✐ ✈✐
♣❤➙♥ s✉② rë♥❣ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❤ú✉ ❤↕♥ ❝❤✐➲✉✳ ❱✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ ✤✐➲✉
❦✐➺♥ ❋r✐t③ ❏♦❤♥ ✈➔ ❑❛r✉s❤✕❑✉❤♥✕❚✉❝❦❡r ✈➔ ❝→❝ ✤à♥❤ ❧þ ✤è✐ ♥❣➝✉ ②➳✉ ✈➔
♠↕♥❤ ❦✐➸✉ ▼♦♥❞✕❲❡✐r ✈➔ ❦✐➸✉ ❲♦❧❢❡ ❝❤♦ ❜➔✐ t♦→♥ tè✐ ÷✉ ❣✐→ trà ❦❤♦↔♥❣
❝â r➔♥❣ ❜✉ë❝ ✤➥♥❣ t❤ù❝✱ ❜➜t ✤➥♥❣ t❤ù❝ ✈➔ r➔♥❣ ❜✉ë❝ t➟♣ tr♦♥❣ ❦❤æ♥❣
❣✐❛♥ ❇❛♥❛❝❤ ❞÷î✐ ♥❣æ♥ ♥❣ú ❞÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣ ❧➔ ♠ët ✈➜♥ ✤➲ ❝➛♥
t❤✐➳t ✈➔ ✤➙② ❝ô♥❣ ❧➔ ♠ët ♥ë✐ ❞✉♥❣ ✤÷ñ❝ ♥❣❤✐➯♥ ❝ù✉ tr♦♥❣ ❧✉➟♥ →♥✳
▼ö❝ ✤➼❝❤ ❝õ❛ ❧✉➟♥ →♥ ❧➔ t❤✐➳t ❧➟♣ ❝→❝ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❜➔✐ t♦→♥
❝➙♥ ❜➡♥❣ ✈❡❝tì ❝â r➔♥❣ ❜✉ë❝ ✤➥♥❣ t❤ù❝✱ ❜➜t ✤➥♥❣ t❤ù❝ ✈➔ r➔♥❣ ❜✉ë❝
t➟♣ q✉❛ ❞÷î✐ ✈✐ ♣❤➙♥ ▼✐❝❤❡❧✕P❡♥♦t✱ ♠ët tr÷í♥❣ ❤ñ♣ r✐➯♥❣ ❝õ❛ ❞÷î✐ ✈✐
♣❤➙♥ s✉② rë♥❣❀ ❈❤ù♥❣ ♠✐♥❤ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❝➛♥ ✈➔ ❝→❝ ✤✐➲✉ ❦✐➺♥ ✤õ ❝❤♦
❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì ✈î✐ r➔♥❣ ❜✉ë❝ ♥â♥✱ r➔♥❣ ❜✉ë❝
✤➥♥❣ t❤ù❝ ✈➔ r➔♥❣ ❜✉ë❝ t➟♣ q✉❛ ❞÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣❀ ❚❤✐➳t ❧➟♣ ❝→❝
✤✐➲✉ ❦✐➺♥ ❝➛♥ ❋r✐t③ ❏♦❤♥ ✈➔ ❑❛r✉s❤✕❑✉❤♥✕❚✉❝❦❡r✱ ❝→❝ ✤✐➲✉ ❦✐➺♥ ✤õ ✈➔
❝→❝ ✤à♥❤ ❧þ ✤è✐ ♥❣➝✉ ❦✐➸✉ ▼♦♥❞✕❲❡✐r ✈➔ ❦✐➸✉ ❲♦❧❢❡ ❝❤♦ ❜➔✐ t♦→♥ tè✐ ÷✉


tr õ r ở tự t tự r ở t
q ữợ s rở ở ừ ỗ
t rsr ỳ
ữỡ s ỳ ữỡ ừ t
tỡ õ r ở tự t tự r ở t
tr ổ ợ st ữỡ
q q ữợ Pt ũ ợ ử
ồ t q t ữủ ợ tt t ỗ s rở
rsr tr t ừ tố ữ
t q ữủ ữủ ử t t tự
tỡ t tố ữ tỡ
t rt rsr
ỳ ừ t t tự tỡ ổ
trỡ õ r ở tự r ở õ ỗ r ở t
q ữợ s rở ợ q sr
rt tứ rt ú tổ ự ữủ
rsr ử ử t ồ t
q ữủ ừ ữủ ự ợ ỳ
t ỗ s rở ỳ ừ t
t rt rsr
tố ữ ữỡ ừ t tố ữ tr ợ
r ở tự t tự r ở t tr ổ
q ữợ s rở ợ q t
ợ tt t ỗ t ừ ử t
t tỹ ỗ t ừ r ở t tự t tỹ t
t t ừ ừ r ở tự ừ
tố ữ ữủ ự t ỵ ố
t ố r ởt số ử
ữủ ồ t q ữủ
ỗ ố ữỡ t


♠ö❝ ❝→❝ ❝æ♥❣ tr➻♥❤ ✤➣ ❝æ♥❣ ❜è ❝õ❛ t→❝ ❣✐↔ ❧✐➯♥ q✉❛♥ ✤➳♥ ❧✉➟♥ →♥ ✈➔ ❞❛♥❤
♠ö❝ ❝→❝ t➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦✳ ❇è♥ ❝❤÷ì♥❣ ❝õ❛ ❧✉➟♥ →♥ ❝â t✐➯✉ ✤➲ ♥❤÷ s❛✉✿

❈❤÷ì♥❣ ✶✿ ❑✐➳♥ t❤ù❝ ❝ì sð✳
• ❈❤÷ì♥❣ ✷✿ ✣✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì q✉❛ ❞÷î✐ ✈✐



♣❤➙♥ ▼✐❝❤❡❧✕P❡♥♦t✳



❈❤÷ì♥❣ ✸✿ ✣✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥
✈❡❝tì q✉❛ ❞÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣✳



❈❤÷ì♥❣ ✹✿ ✣✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❜➔✐ t♦→♥ tè✐ ÷✉ ❣✐→ trà ❦❤♦↔♥❣ q✉❛
❞÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣✳

❈❤÷ì♥❣ ✶ tr➻♥❤ ❜➔② ❝→❝ ❦❤→✐ ♥✐➺♠ ✈➔ ❦✐➳♥ t❤ù❝ ❜ê trñ ❝❤♦ ❝→❝ ❝❤÷ì♥❣
s❛✉ ❝õ❛ ❧✉➟♥ →♥ ♥❤÷✿ ▼ët sè ❦✐➳♥ t❤ù❝ ✈➲ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì✱ ❜➔✐
t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì ✈➔ ❜➔✐ t♦→♥ tè✐ ÷✉ ✈❡❝tì❀ ❈→❝ ✤à♥❤
❧þ ✈æ ❤÷î♥❣ ❤â❛ ❝❤♦ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì❀ ▼ët sè ✤à♥❤ ♥❣❤➽❛ ✈➔ ❦➳t
q✉↔ ✈➲ ❝→❝ ❞÷î✐ ✈✐ ♣❤➙♥❀ ▼ët sè ❦✐➳♥ t❤ù❝ ✈➲ ❤➔♠ ❧ç✐ s✉② rë♥❣✳
❈❤÷ì♥❣ ✷ t❤✐➳t ❧➟♣ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❝➛♥ tè✐ ÷✉ ✈➔ ❝→❝ ✤✐➲✉ ❦✐➺♥ ✤õ tè✐ ÷✉
❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ❍❡♥✐❣ ✈➔ ♥❣❤✐➺♠ s✐➯✉ ❤ú✉ ❤✐➺✉ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥
❜➡♥❣ ✈❡❝tì ✈î✐ ❝→❝ ❤➔♠ ▲✐♣s❝❤✐t③ ✤à❛ ♣❤÷ì♥❣ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤
❝â r➔♥❣ ❜✉ë❝ ✤➥♥❣ t❤ù❝✱ ❜➜t ✤➥♥❣ t❤ù❝ ✈➔ r➔♥❣ ❜✉ë❝ t➟♣ ❜➡♥❣ ❝æ♥❣ ❝ö
❞÷î✐ ✈✐ ♣❤➙♥ ▼✐❝❤❡❧✕P❡♥♦t✳ ❈❤ó þ r➡♥❣✱ ❞÷î✐ ✈✐ ♣❤➙♥ ▼✐❝❤❡❧✕P❡♥♦t ❧➔
♠ët ❞÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣✳ ❈→❝ ❦➳t q✉↔ ✤â ✤➣ ✤÷ñ❝ →♣ ❞ö♥❣ ❝❤♦ ❜➔✐
t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì ✈➔ ❜➔✐ t♦→♥ tè✐ ÷✉ ✈❡❝tì✳
❈❤÷ì♥❣ ✸ t❤✐➳t ❧➟♣ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❝➛♥ tè✐ ÷✉ ❋r✐t③ ❏♦❤♥ ❝❤♦ ♥❣❤✐➺♠
❤ú✉ ❤✐➺✉ ②➳✉ ❝õ❛ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì ❦❤æ♥❣ trì♥ ✈î✐
r➔♥❣ ❜✉ë❝ ♥â♥✱ r➔♥❣ ❜✉ë❝ ✤➥♥❣ t❤ù❝ ✈➔ r➔♥❣ ❜✉ë❝ t➟♣✱ tr♦♥❣ ✤â ♥â♥
❧➔ ♠ët ✤❛ ❞✐➺♥ ❧ç✐ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❤ú✉ ❤↕♥ ❝❤✐➲✉ ✈➔ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉
✤÷ñ❝ ①➨t t❤❡♦ ♠ët ♥â♥ ❧ç✐✱ ✤â♥❣✱ ♥❤å♥✳ ❱î✐ ✤✐➲✉ ❦✐➺♥ ❝❤➼♥❤ q✉② ❦✐➸✉
▼❛♥❣❛s❛r✐❛♥✕❋r♦♠♦✈✐t③✱ ❝❤ó♥❣ tæ✐ ❝❤ù♥❣ ♠✐♥❤ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❝➛♥ tè✐ ÷✉
❑❛r✉s❤✕❑✉❤♥✕❚✉❝❦❡r ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉ ❝õ❛ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣
t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì q✉❛ ❞÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣✳ ❱î✐ ❝→❝ ❣✐↔ t❤✐➳t ✈➲


t tỹ ỗ t r ở t tự t tỹ t t
t r ở tự õ tố ữ
ỳ tr t ừ tố ữ
r ữỡ ú tổ tt rt q
ữợ s rở tố ữ ữỡ ừ t tố
ữ tr P tr ổ ỷ ử
q srrt tứ rt
ú tổ ự ữủ rsr
tố ữ ữỡ ừ t P ợ
q srrt ỡ (CQ(s) 2) ú tổ
r ữủ t ổ ừ tỷ r tữỡ ự
ợ t ừ ử t ừ tố
ữ ữủ ự ợ tt t ỗ t ừ
ử t t tỹ ỗ t ừ r ở t tự t tỹ
t t t ừ r ở tự t ố
r ữủ ự ũ ợ ỵ ố
ố tữỡ ự ữủ tt
t q tr tr ữủ t ỹ ổ tr
1 2 3 tr ử ổ tr ổ ố q


t q ừ ữủ t
r ố ữ ồ ồ ử
ồ ở
r ự s ừ rữớ ồ ữ



❈❤÷ì♥❣ ✶

❑✐➳♥ t❤ù❝ ❝ì sð
✣➸ t❤✐➳t ❧➟♣ ❝→❝ ❦➳t q✉↔ ✈➲ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ✈➔ ❝→❝ ✤à♥❤ ❧þ ✤è✐ ♥❣➝✉
❝❤♦ ❝→❝ ❜➔✐ t♦→♥ tè✐ ÷✉ ❦❤æ♥❣ trì♥ ❝➛♥ sû ❞ö♥❣ ❝→❝ ❦❤→✐ ♥✐➺♠✱ t➼♥❤ ❝❤➜t
❝õ❛ ❝→❝ ❞÷î✐ ✈✐ ♣❤➙♥ ✈➔ ♠ët sè ❦➳t q✉↔ ❧✐➯♥ q✉❛♥ ❦❤→❝✳ ❚r♦♥❣ ❈❤÷ì♥❣
✶✱ ❝❤ó♥❣ tæ✐ tr➻♥❤ ❜➔② ❝→❝ ❦✐➳♥ t❤ù❝ ❜ê trñ ❝➛♥ t❤✐➳t ❝❤♦ ❝→❝ ❝❤÷ì♥❣ s❛✉
❝õ❛ ❧✉➟♥ →♥✳ ▼ö❝ ✶✳✶ tr➻♥❤ ❜➔② ❝→❝ ❦❤→✐ ♥✐➺♠ ❧✐➯♥ q✉❛♥ ✤➳♥ ❜➔✐ t♦→♥ ❝➙♥
❜➡♥❣ ✈❡❝tì ❝ò♥❣ ✈î✐ ❤❛✐ tr÷í♥❣ ❤ñ♣ r✐➯♥❣ ❧➔ ❜➔✐ t♦→♥ tè✐ ÷✉ ✈❡❝tì ✈➔ ❜➔✐
t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝tì ✈î✐ ❝→❝ ❧♦↕✐ ♥❣❤✐➺♠ ♥❤÷✿ ◆❣❤✐➺♠
❤ú✉ ❤✐➺✉ ②➳✉✱ ❤ú✉ ❤✐➺✉ ❍❡♥✐❣ ✈➔ ♥❣❤✐➺♠ s✐➯✉ ❤ú✉ ❤✐➺✉✳ ▼ö❝ ✶✳✷ ♥❤➢❝
❧↕✐ ♠ët sè ❦❤→✐ ♥✐➺♠✱ t➼♥❤ ❝❤➜t ❝ì ❜↔♥ ❝õ❛ ❝→❝ ❞÷î✐ ✈✐ ♣❤➙♥ ♥❤÷ ❞÷î✐
✈✐ ♣❤➙♥ ❈❧❛r❦❡✱ ❞÷î✐ ✈✐ ♣❤➙♥ ▼✐❝❤❡❧✕P❡♥♦t✱ ❞÷î✐ ✈✐ ♣❤➙♥ s✉② rë♥❣✱ ♠è✐
q✉❛♥ ❤➺ ❣✐ú❛ ❝→❝ ❞÷î✐ ✈✐ ♣❤➙♥ ✈➔ ♠ët sè ❦➳t q✉↔ ❝➛♥ sû ❞ö♥❣ tr♦♥❣ ❝→❝
❝❤÷ì♥❣ s❛✉✳ ▼ö❝ ✶✳✸ tr➻♥❤ ❜➔② ♠ët sè ❦➳t q✉↔ ✈æ ❤÷î♥❣ ❤â❛ ❝õ❛ ❳✳❍✳
●♦♥❣ ❬✷✸❪ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉✱ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ❍❡♥✐❣ ❝õ❛ ❜➔✐ t♦→♥
❝➙♥ ❜➡♥❣ ✈❡❝tì✳ ▼ö❝ ✶✳✹ tr➻♥❤ ❜➔② ♠ët sè ❦❤→✐ ♥✐➺♠ ✈➲ ❤➔♠ ❧ç✐ s✉② rë♥❣
❧➔♠ ❝ì sð t❤✐➳t ❧➟♣ ❝→❝ ✤✐➲✉ ❦✐➺♥ ✤õ tè✐ ÷✉ ❝õ❛ ❜➔✐ t♦→♥ ✭❈❱❊P✮✳ ◆ë✐
❞✉♥❣ ❝õ❛ ❈❤÷ì♥❣ ✶ ✤÷ñ❝ t❤❛♠ ❦❤↔♦ tr♦♥❣ ❝→❝ t➔✐ ❧✐➺✉ ❬✶❪✕❬✺❪✱ ❬✶✶❪✱ ❬✶✺❪✱
❬✷✼❪✱ ❬✸✵❪✱ ❬✸✶❪✱ ❬✸✽❪✱ ❬✺✵❪✱ ❬✺✶❪✱ ❬✺✼❪✱ ❬✺✽❪✳

✶✳✶ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ✈➔ ❝→❝ tr÷í♥❣ ❤ñ♣ r✐➯♥❣
❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ❧➔ ♠ët ❜ë ♣❤➟♥ q✉❛♥ trå♥❣ ❝õ❛ ❣✐↔✐ t➼❝❤ ♣❤✐
t✉②➳♥ ✈➔ tr♦♥❣ ♥❤ú♥❣ ♥➠♠ ❣➛♥ ✤➙② ❜➔✐ t♦→♥ ♥➔② ✤➣ ✤÷ñ❝ ♥❤✐➲✉ t→❝ ❣✐↔




tr♦♥❣ ✈➔ ♥❣♦➔✐ ♥÷î❝ q✉❛♥ t➙♠ ♥❣❤✐➯♥ ❝ù✉✳ ▼ët ❝❤õ ✤➲ q✉❛♥ trå♥❣ ❝õ❛
❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ♠➔ ❝❤ó♥❣ tæ✐ q✉❛♥ t➙♠ ❧➔ ♥❣❤✐➯♥ ❝ù✉ ✤✐➲✉ ❦✐➺♥
tè✐ ÷✉ ❝❤♦ ❝→❝ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉✱ ❤ú✉ ❤✐➺✉ ❍❡♥✐❣ ✈➔ ♥❣❤✐➺♠ s✐➯✉ ❤ú✉
❤✐➺✉✳
❳✉②➯♥ s✉èt ❧✉➟♥ →♥✱ t❛ ❧✉æ♥ ❣✐↔ sû r➡♥❣ ❝→❝ ❦❤æ♥❣ ❣✐❛♥ X, Y, Z, W ❧➔
❝→❝ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳

✶✳✶✳✶✳ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì
❈❤♦ X, Y, Z ✈➔ W ❧➔ ❝→❝ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ✈➔ C ❧➔ t➟♣ ❝♦♥ ❦❤→❝ ré♥❣
❝õ❛ X ❀ Q ✈➔ S ❧➛♥ ❧÷ñt ❧➔ ❝→❝ ♥â♥ ❧ç✐ tr♦♥❣ Y ✈➔ Z ❀ F : X × X → Y
❧➔ ♠ët s♦♥❣ ❤➔♠ ✈❡❝tì ✈î✐ F (x, x) = 0✱ ✈î✐ ♠å✐ x ∈ X ❀ g : X → Z ✈➔

h : X → W ❧➔ ❝→❝ →♥❤ ①↕ r➔♥❣ ❜✉ë❝✳
• ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ❝â r➔♥❣ ❜✉ë❝✱ ❦➼ ❤✐➺✉ ❧➔ ✭❈❱❊P✮✱ ✤÷ñ❝ ♣❤→t
❜✐➸✉ ♥❤÷ s❛✉✿ ❚➻♠ ✈❡❝tì x ∈ K s❛♦ ❝❤♦

/ −Q\ {0} , ✈î✐ ♠å✐ y ∈ K,
F (x, y) ∈
tr♦♥❣ ✤â✱ Q ❧➔ ♥â♥ ❧ç✐ tr♦♥❣ Y ✈➔ K = {x ∈ C : g(x) ∈ −S, h(x) = 0}
❧➔ t➟♣ ❝❤➜♣ ♥❤➟♥ ✤÷ñ❝ ❝õ❛ ❜➔✐ t♦→♥✳
◆➳✉ ✐♥t Q = ∅, ✈❡❝tì x ∈ K t❤ä❛ ♠➣♥

/ −✐♥tQ, ✈î✐ ♠å✐ y ∈ K,
F (x, y) ∈

(1.1)

✤÷ñ❝ ❣å✐ ❧➔ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉ ❝õ❛ ❜➔✐ t♦→♥ ✭❈❱❊P✮✳ ◆➳✉ tç♥ t↕✐ ♠ët
❧➙♥ ❝➟♥ U ❝õ❛ x s❛♦ ❝❤♦ ✭✶✳✶✮ t❤ä❛ ♠➣♥ ✈î✐ ♠å✐ y ∈ K ∩ U t❤➻ x ✤÷ñ❝
❣å✐ ❧➔ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉ ✤à❛ ♣❤÷ì♥❣ ❝õ❛ ❜➔✐ t♦→♥ ✭❈❱❊P✮✳
❚r÷í♥❣ ❤ñ♣ Y = Rr , Z = Rm , W = R ✈➔ ❝→❝ ♥â♥ Q = Rr+ ✱ S = Rm
+✱
❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì ❝â r➔♥❣ ❜✉ë❝ ✭❈❱❊P✮ ❝â ❞↕♥❣✿ ❚➻♠ x ∈ K
s❛♦ ❝❤♦

F (x, y) ∈
/ −Rr+ \ {0}, ✈î✐ ♠å✐ y ∈ K,

(1.2)

tr♦♥❣ ✤â t➟♣ ♥❤➟♥ ✤÷ñ❝

K = x ∈ C : gi (x) ≤ 0, ✈î✐ ♠å✐ i ∈ I; hj (x) = 0, ✈î✐ ♠å✐ j ∈ L ,


ợ gi , hj (i I := {1, 2, ..., m} , j L := {1, 2, ..., }) số tỹ
tr Rn tỡ F = (F1 , F2 , ..., Fr )
t Fx (y) = F (x, y), Fk,x (y) = Fk (x, y), ợ ồ k {1, 2, .., r}
sỷ r Fx (x) = 0 õ tỡ x K ỳ ữỡ
tữ ỳ ữỡ ừ t P tỗ
t > 0 s ổ tỗ t y K B(x, ) tọ

Fk,x (y) 0, ợ ồ k J;
Fs,x (y) < 0, ợ t t ởt s J;
(tữ Fk,x (y) < 0, ợ ồ k J).
t ú tổ ỹ ỏ t
P
ồ Y ổ ố ừ ổ Y ỵ Q õ
ố ừ õ Q Y ữ s

Q = y Y : y , y 0, ợ ồ y Q .
ỹ tr qstrr ừ Q Q# ữủ

Q# = y Y : y , y > 0, ợ ồ y Q\ {0} .
ởt t ỗ rộ B ừ Q ữủ ồ ởt ỡ s ừ õ Q

Q = B 0
/ B. B ỡ s ừ Q
Q (B) = y Q# : t > 0 tọ y , y t, ợ ồ b B .
t õ Q (B) = ỷ ử ỵ t t
ỗ rớ {0} B s r tỗ t y Y \ {0} s

= inf { y , b : b B} > y (0) = 0.
t ởt VB tt ố ỗ ừ 0 Y tr

VB = y Y : | y , y | <


.
2

õ t ữủ

inf { y , y : y B + VB }


.
2


ợ ộ ởt ỗ U ừ 0 ợ U VB t õ 0
/ (B + U ). t
t QU (B) = (U + B) ởt õ ỗ ồ

Q\ {0} tQU (B).

sỷ A ởt t ừ ổ X
A ữủ ồ ỗ ợ ồ x, y A ợ ồ , à 0 : + à = 1
t õ x + ày A;
A ữủ ồ ợ ồ x, y A ợ ồ : || 1 t
õ x A;
A ữủ ồ tt ố ỗ A ỗ
ỹ tr ổ t tr ỳ
s ỳ ữủ tr ữ s

tỡ x K ồ ỳ
ừ t P tỗ t tt ố ỗ U ừ 0 ợ

U VB s
F (x, K) (tQU (B)) = ,
tr õ F (x, K) =

yK

F (x, y)

QU (B) õ ỗ ồ x ỳ

F (x, K) (tQU (B)) = .

(1.3)

ữ ỵ r x K ỳ ừ t P
tỗ t tt ố ỗ U ừ 0 ợ U VB s

F (x, K) (U B) = .

(1.4)

tỡ x K ồ s ỳ ừ
t P ợ ộ ởt V ừ 0 tỗ t ởt

U ừ 0 s
F (x, K) (U Q) V.

(1.5)


r tr t t K K W ợ W
ởt ừ x t t ữủ ỳ
ữỡ tữ ừ t P

t t sỷ B ởt ỡ s ừ õ Q
x K s ỳ ừ t P t x ụ
ỳ ừ t õ
B t õ t ỳ ừ
t P ụ s ỳ ừ t õ

sỷ B ởt ỡ s ừ õ Q õ
ợ ồ tt ố ỗ U ừ 0 ợ U VB t õ



QU (B) \ {0} Q (B);

ợ ộ f Q (B) tỗ t ởt tt ố ỗ U ừ
0 Y ợ U VB s f QU (B) \ {0}
B t õ t t Q = Q (B), ợ t Q
tr ừ Q tr Y t tổổ ừ Y .



t t tự tỡ
ỵ L(X, Y ) ổ t t tử tứ X
Y K X t t tự õ r ở ỵ
õ x K s

T (x)(y x)
/ Q \ {0}, ợ ồ y K,

(1.6)

tr õ T : K L(X, Y ) tr t tỷ t
t tử tứ X Y
t t tỡ P ữ tr ử
tr õ s F ữủ

F (x, y) = T (x)(y x), ợ ồ x, y K.
õ t tỡ õ r ở P tr t
t t tự tỡ


❱❡❝tì x ✤÷ñ❝ ❣å✐ ❧➔ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ✤à❛ ♣❤÷ì♥❣ ❝õ❛ ❜➔✐ t♦→♥ ✭❈❱❱■✮
♥➳✉ tç♥ t↕✐ sè δ > 0 s❛♦ ❝❤♦ ✭✶✳✻✮ t❤ä❛ ♠➣♥ ✈î✐ ♠å✐ y ∈ K ∩ B(x; δ)✳
❚r♦♥❣ tr÷í♥❣ ❤ñ♣✱ ✐♥tQ = ∅ ❦❤✐ ✤â x ❣å✐ ❧➔ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉ ✤à❛
♣❤÷ì♥❣ ❝õ❛ ❜➔✐ t♦→♥ ✭❈❱❱■✮ ♥➳✉ tç♥ t↕✐ δ > 0 s❛♦ ❝❤♦

T (x)(y − x) ∈
/ −✐♥tQ, ✈î✐ ♠å✐ y ∈ K ∩ B(x; δ).
❑❤✐ ✤â✱ ✤à♥❤ ♥❣❤➽❛ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ✤à❛ ♣❤÷ì♥❣ ✭t✳÷✳✱ ♥❣❤✐➺♠ ❤ú✉
❤✐➺✉ ②➳✉ ✤à❛ ♣❤÷ì♥❣✮ tr♦♥❣ tr÷í♥❣ ❤ñ♣ Q = Rr+ ❝â ❞↕♥❣✿ ❑❤æ♥❣ tç♥ t↕✐

y ∈ K ∩ B(x; δ) s❛♦ ❝❤♦
T (x)k (y − x) ≤ 0, ✈î✐ ♠å✐ k ∈ J;
T (x)s (y − x) < 0, ✈î✐ ➼t ♥❤➜t ♠ët s ∈ J;
(t✳÷✳✱ T (x)k (y − x) < 0, ✈î✐ ♠å✐ k ∈ J),
tr♦♥❣ ✤â✱ T (x) = (T (x)1 , . . . , T (x)r ), T (x)k : X → R (k = 1, . . . , r)✳

✣à♥❤ ♥❣❤➽❛ ✶✳✹✳ ✭❬✷✹❪✱ ✣à♥❤ ♥❣❤➽❛ ✷✳✹✮ ❈❤♦ T : K → L(X, Y ) ❧➔ ♠ët
❤➔♠ ❣✐→ trà ✈❡❝tì✳ ◆➳✉ F (x, y) = T (x)(y − x), ✈î✐ ♠å✐ x, y ∈ K ✈➔ ♥➳✉

x ∈ K ❧➔ ♠ët ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉✱ ❤❛② ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ❍❡♥✐❣✱ ♥❣❤✐➺♠
s✐➯✉ ❤ú✉ ❤✐➺✉ ❝õ❛ ❜➔✐ t♦→♥ ✭❈❱❊P✮✱ t❤➻ x ∈ K ✤÷ñ❝ ❣å✐ ❧➔ ♥❣❤✐➺♠ ❤ú✉
❤✐➺✉ ②➳✉✱ ❤❛② ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ❍❡♥✐❣✱ ♥❣❤✐➺♠ s✐➯✉ ❤ú✉ ❤✐➺✉ ✭t✳÷✳✱✮ ❝õ❛
❜➔✐ t♦→♥ ✭❈❱❱■✮✳

✶✳✶✳✸✳ ❇➔✐ t♦→♥ tè✐ ÷✉ ✈❡❝tì
▼ët tr♦♥❣ ♥❤ú♥❣ ù♥❣ ❞ö♥❣ q✉❛♥ trå♥❣ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝tì
❧➔ ❜➔✐ t♦→♥ tè✐ ÷✉ ✈❡❝tì✳ ❇➔✐ t♦→♥ tè✐ ÷✉ ✈❡❝tì ✭❈❱❖P✮ ❝â ❞↕♥❣ s❛✉✿

min {f (x) : x ∈ K} ,

(1.7)

tr♦♥❣ ✤â✱ f : K → Rr ✱ ❝ü❝ t✐➸✉ ✤÷ñ❝ ❧➜② t❤❡♦ ♥â♥ ❧ç✐ ✤â♥❣ Q✱

K = {x ∈ C : g(x) ∈ −S, h(x) = 0} ,
ð ✤➙②✱ K ❧➔ t➟♣ ❝❤➜♣ ♥❤➟♥ ✤÷ñ❝ ❝õ❛ ❜➔✐ t♦→♥ ✤÷ñ❝ t❤✐➳t ❧➟♣ ♥❤÷ tr♦♥❣
▼ö❝ ✶✳✶✳✶✳


t t tỡ P tr õ s F ữủ


F (x, y) = f (x) f (y), ợ ồ x, y K.
õ t tố ữ tỡ P tr t t tỡ
P
r trữớ ủ Q = Rr+ ỹ t Prt ữỡ ỹ
t Prt ữỡ tr t ổ tỗ t y M B(x; )
s

fk (x) fk (x), ợ ồ k J,
fs (x) < fs (x), ợ t t ởt s J.
(tữ fk (x) < fk (x), ợ ồ k J).

f : K Y ởt
tr tỡ F (x, y) = f (y) f (x), ợ ồ x, y K x K
ởt ỳ ỳ
s ỳ ừ t P t x K ồ ỳ
ỳ s ỳ tữ ừ
t P

ởt số ữợ
r ử ú tổ ởt số t t ỡ
ừ ữợ r ữợ Pt ữợ
s rở ố q ừ ú ởt số t q tt

ữợ r
sỷ F : X Y tr õ X, Y ổ
X ổ ố ừ X. L(X, Y ) ổ
t tỷ t t tử tứ X Y


✣à♥❤ ♥❣❤➽❛ ✶✳✻✳ ✭❬✷❪✮
✭✐✮ ✣↕♦ ❤➔♠ ❝õ❛ F t❤❡♦ ♣❤÷ì♥❣ υ t↕✐ x ∈ X ✤÷ñ❝ ✤à♥❤ ♥❣❤➽❛ ❜ð✐

F (x; υ) = lim
t↓0

F (x + tυ) − F (x)
,
t

♥➳✉ ❣✐î✐ ❤↕♥ ♥➔② tç♥ t↕✐✳
✭✐✐✮ ⑩♥❤ ①↕ F ❣å✐ ❧➔ ❦❤↔ ✈✐ ●➙t❡❛✉① t↕✐ x ∈ X ✱ ♥➳✉ tç♥ t↕✐ Λ ∈ L(X, Y )
s❛♦ ❝❤♦ ✈î✐ ♠é✐ υ ∈ X, t❛ ❝â

F (x + tυ) = F (x) + tΛυ + o(t).
✭✐✐✐✮ ⑩♥❤ ①↕ F ❣å✐ ❧➔ ❦❤↔ ✈✐ ❋r➨❝❤❡t t↕✐ x ∈ X ✱ ♥➳✉ tç♥ t↕✐ Λ ∈ L(X, Y )
s❛♦ ❝❤♦

F (x + tυ) = F (x) + Λυ + r(υ),
tr♦♥❣ ✤â✱ ||r(υ)||Y .||υ||−1
X → 0 ❦❤✐ ||υ||X → 0.
✭✐✈✮ ⑩♥❤ ①↕ F ❣å✐ ❧➔ ❦❤↔ ✈✐ ❝❤➦t t↕✐ x ∈ X ✱ ♥➳✉ tç♥ t↕✐ →♥❤ ①↕ t✉②➳♥
t➼♥❤ ❧✐➯♥ tö❝ Ds F (x) ∈ L(X, Y ) s❛♦ ❝❤♦ ✈î✐ ♠å✐ υ ❣✐î✐ ❤↕♥ s❛✉ tç♥ t↕✐
1
lim (F (x + tυ) − F (x )) = Ds F (x)υ,
x →x t
t↓0

tr♦♥❣ ✤â✱ sü ❤ë✐ tö ❧➔ ✤ç♥❣ ✤➲✉ t❤❡♦ υ tr➯♥ ❝→❝ t➟♣ ❝♦♠♣➠❝✳

✣à♥❤ ♥❣❤➽❛ ✶✳✼✳ ✭❬✷❪✮ ●✐↔ sû f : X → R ▲✐♣s❝❤✐t③ ✤à❛ ♣❤÷ì♥❣ t↕✐
x ∈ X ✳ ✣↕♦ ❤➔♠ s✉② rë♥❣ ❝õ❛ f t↕✐ x t❤❡♦ ♣❤÷ì♥❣ υ ✱ ❦➼ ❤✐➺✉ ❧➔ f ◦ (x; υ)✱
✤÷ñ❝ ✤à♥❤ ♥❣❤➽❛ ♥❤÷ s❛✉

f ◦ (x; υ) = lim sup
y→x,t↓0

▼➺♥❤ ✤➲ ✶✳✶✳ ✭❬✷❪✮ ●✐↔ sû f

f (y + tv) − f (y)
.
t

▲✐♣s❝❤✐t③ ✤à❛ ♣❤÷ì♥❣ ✈î✐ ❤➡♥❣ sè ▲✐♣s❝❤✐t③

t↕✐ x✳ ❑❤✐ ✤â✱
✭✐✮ ❤➔♠ υ → f ◦ (x; υ) ❧➔ ❤ú✉ ❤↕♥✱ t❤✉➛♥ ♥❤➜t ❞÷ì♥❣✱ ❞÷î✐ ❝ë♥❣ t➼♥❤ tr➯♥
X ✈➔
K

|f ◦ (x; υ)| ≤ K
✭✐✐✮ f ◦ (x; υ) ♥û❛

υ ;

❧✐➯♥ tö❝ tr➯♥ t❤❡♦ (x, υ) ✈➔ f ◦(x; υ) ▲✐♣s❝❤✐t③ ✤à❛ ♣❤÷ì♥❣
✈î✐ ❤➡♥❣ sè K t❤❡♦ υ tr➯♥ X;
✭✐✐✐✮ f ◦ (x; −υ) = −f ◦ (x; υ).


✣à♥❤ ♥❣❤➽❛ ✶✳✽✳ ✭❬✷❪✮
✭✐✮ ●✐↔ sû f : X → R ❧➔ ❤➔♠ ▲✐♣s❝❤✐t③ ✤à❛ ♣❤÷ì♥❣✳ ❉÷î✐ ✈✐ ♣❤➙♥ s✉②
rë♥❣ ❈❧❛r❦❡ ❝õ❛ ❤➔♠ f t↕✐ x✱ ❦➼ ❤✐➺✉✿ ∂ C f (x) ❧➔ t➟♣ ❤ñ♣ ✤÷ñ❝ ①→❝ ✤à♥❤
tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ✤è✐ ♥❣➝✉ X ∗ ♥❤÷ s❛✉

∂ C f (x) = {x∗ ∈ X ∗ : f ◦ (x, υ) ≥ x∗ , υ , ✈î✐ ♠å✐ υ ∈ X},
tr♦♥❣ ✤â✱ ., . ❧➔ ❣✐→ trà ❝õ❛ x∗ t↕✐ υ.
✭✐✐✮ ●✐↔ sû f : Rn → Rp ❧➔ ▲✐♣s❝❤✐t③ ✤à❛ ♣❤÷ì♥❣ t↕✐ x✱ ❏❛❝♦❜✐❛♥ s✉② rë♥❣
❈❧❛r❦❡ ❝õ❛ ❤➔♠ f t↕✐ x ✤÷ñ❝ ✤à♥❤ ♥❣❤➽❛ ♥❤÷ s❛✉

∂J f (x) = ❝♦♥✈

lim ∇f (xi ) : xi → x, xi ∈ S ,

i→+∞

tr♦♥❣ ✤â✱ ∇f (xi ) ❧➔ ❏❛❝♦❜✐❛♥ ❝õ❛ ❤➔♠ f t↕✐ xi ✈➔ S ❧➔ t➟♣ ❝→❝ ✤✐➸♠ ❦❤↔
✈✐ ❝õ❛ ❤➔♠ f ✳ ❚r♦♥❣ tr÷í♥❣ ❤ñ♣ n = 1, ❏❛❝♦❜✐❛♥ s✉② rë♥❣ ❈❧❛r❦❡ ❝õ❛
❤➔♠ f t↕✐ x trò♥❣ ✈î✐ ❞÷î✐ ✈✐ ♣❤➙♥ ❈❧❛r❦❡ ❝õ❛ ❤➔♠ f t↕✐ x.

●✐↔ sû f ❧➔ ▲✐♣s❝❤✐t③ ✤à❛ ♣❤÷ì♥❣ ✈î✐ ❤➡♥❣ sè ▲✐♣s✲
❝❤✐t③ K t↕✐ x✳ ❑❤✐ ✤â✱
✭✐✮ ∂ C f (x) = ∅✱ ❧ç✐✱ ❝♦♠♣➢❝ ②➳✉✯ tr♦♥❣ X ∗ ✈➔
ξ∗ ≤ K, ✈î✐ ♠å✐ ξ ∈ ∂ C f (x);
✭✐✐✮ ✈î✐ ♠å✐ υ ∈ X ✱ t❛ ❝â
▼➺♥❤ ✤➲ ✶✳✷✳ ✭❬✷❪✮

f ◦ (x, υ) = ♠❛① { ξ, υ : ξ ∈ ∂ C f (x)}.

▼➺♥❤ ✤➲ ✶✳✸✳ ✭❬✷❪✮

●✐↔ sû f : X → R ❧➔ ❤➔♠ ▲✐♣s❝❤✐t③ ✤à❛ ♣❤÷ì♥❣ t↕✐ x ✈➔ ❝â ✤↕♦ ❤➔♠
●➙t❡❛✉① ∇Gf (x)✳ ❑❤✐ ✤â✱ ∇Gf (x) ∈ ∂ C f (x).
✭✐✐✮ ●✐↔ sû f ❦❤↔ ✈✐ ❝❤➦t t↕✐ x✳ ❑❤✐ ✤â✱ f ❧➔ ▲✐♣s❝❤✐t③ ✤à❛ ♣❤÷ì♥❣ t↕✐ x
✈➔ ∂ C f (x) = {Dsf (x)}.
✭✐✐✐✮ ◆❣÷ñ❝ ❧↕✐✱ ♥➳✉ f ❧➔ ▲✐♣s❝❤✐t③ ✤à❛ ♣❤÷ì♥❣ t↕✐ x ✈➔ ∂ C f (x) ❝❤➾ ❣ç♠
♠ët ♣❤➛♥ tû ❧➔ ξ t❤➻ f ❦❤↔ ✈✐ ❝❤➦t ❍❛❞❛♠❛r❞ t↕✐ x ✈➔ ξ = Dsf (x).
✭✐✮

✣à♥❤ ♥❣❤➽❛ ✶✳✾✳ ✭❬✶❪✮ ❈❤♦ f ❧➔ ❤➔♠ ❧ç✐ tr➯♥ X ✱ ❦❤✐ ✤â ❞÷î✐ ✈✐ ♣❤➙♥
❝õ❛ ❤➔♠ f t↕✐ x ✤÷ñ❝ ✤à♥❤ ♥❣❤➽❛ ♥❤÷ s❛✉

∂C f (x) := {x∗ ∈ X ∗ : f (x) − f (x) ≥ x∗ , x − x }.


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×