Tải bản đầy đủ

Tiết 5-6 Cực trị

TIẾT 5-6

CỰC TRỊ
Ngày soạn : ……………….
Ngày giảng : ………………

I. MỤC TIÊU
1. Về kiến thức:
- KN, ĐK đủ để hàm số có cực trị, các quy tắc tìm cực trị
2. Về kỹ năng:
2.1. Đối với HS xét TN.
- Tìm điểm cực trị, số điểm cực trị, cực trị của hàm số.
2.2. Đối với học sinh xét đại học
- Các bài toán chứa tham số để hàm số có cực trị,cưc trị thỏa mãn điều kiện cho trước ( mức độ đơn
giản).
3. Về tư duy và thái độ:
- Thái độ nghiêm túc, cẩn thận
- Tính logic, chính xác
- Tích cực hợp tác nhóm trong quá trình ôn tập
II. CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH.
- Giáo viên : Phiếu ôn tập phát cho học sinh, máy chiếu

- Học sinh : Ôn tập phần nội dung cực trị của hàm số trong SGK
III.PHƯƠNG PHÁP:
Thuyết trình - Gợi mở - Thảo luận nhóm – luyện tập
IV. TIẾN TRÌNH BÀI HỌC:
1. Ổn định tổ chức: Sĩ số:……………
2. Kiểm tra bài cũ – khởi động vào bài mới : (5 phút)
- HS nhắc lại điều kiện cần và các quy tắc tìm cực trị
3. Bài mới:
Hoạt động
1: Ôn tập tìm cực trị của hàm số. (40’)
Mục tiêu: Học sinh có kỹ năng tìm cực trị của hàm số, kỹ năng sử dụng MTCT hỗ trợ
Cách thức thực hiện :
- Gọi học sinh nên cách tìm cực trị qua các quy tắc.
- Tổ chức cho học sinh hoạt động các nhân và tập thể hoàn thành các mức độ bài tập.
- Lên bảng trình bày và giải thích các đáp án
- GV tổ chức cho HS nhận xét và chốt kiến thức.
1. Dạng 1: Tìm cực trị của hàm số
a) Phương pháp giải


PP tự luận: Lập bảng biến thiên của hàm số y = f ( x) từ đó tìm điểm cực trị của hàm số, giá



trị cực trị của hàm số và điểm cực trị của đồ thị hàm số.
PP trắc nghiệm: Sử dụng máy tính, tính giá trị đạo hàm của hàm số y = f ( x) tại các giá trị
lân cận của x = x0 để xác định dấu của f ′ ( x) khi x qua x0 , từ đó biết x0 là điểm cực đại

hay điểm cực tiểu của hàm số.
b) Bài tập vận dụng
Nhận biết:
Câu 1: Cho hàm số y = x 3 − 3 x có giá trị cực đại và cực tiểu lần lượt là y1 , y2 . Khi đó:
A. y1 − y2 = −4.
Câu 2:

B. 2 y1 − y2 = 6.

3
Điểm cực tiểu của hàm số : y = − x + 3x + 4 là :


C. 2 y1 − y2 = −6.

D. y1 + y2 = 4.


A. x = −1 .

Câu 3:

C. x = −3 .

D. x = 3 .
Đồ thị của hàm số y = 3x − 4 x − 6 x + 12 x + 1 đạt cực tiểu tại M ( x1 ; y1 ) . Tính tổng
B. x = 1 .
4

3

2

x1 + y1
Câu 4:

B. −11 .
C. 7 .
D. 6 .
Cho hàm số y = 2 x − 3 x − 4 . Tích các giá trị cực đại và cực tiểu của hàm số bằng:
A. 0 .
B. −12 .
C. 20 .
D. 12 .

Câu 5:

Hàm số y =

A. 5 .

3

A. x = 1 .

Câu 6:
Câu 7:

x2 − 3
đạt cực đại tại:
x−2
B. x = 2 .

C. x = 3 .
Tổng giá trị cực đại và giá trị cực tiểu của hàm số y = x 3 − 3 x 2 + 2 là
A. 3
B. 2
C. 1

D. x = 0 .
D. 0

Tọa độ điểm cực đại của đồ thị hàm số y = −2x3 + 3x2 + 1 là:
A. ( 0;1) .

Câu 8:

2

B. ( 1;2) .

C. ( −1;6) .

D. ( 2;3) .

Cho hàm số y = x3 − 3x2 + 2 . Khẳng định nào sau đây là đúng?
A. Hàm số đạt cực đại tại x = 2 và đạt cực tiểu tại x = 0 .
B. Hàm số đạt cực tiểu tại x = 2 và đạt cực đại x = 0 .
C. Hàm số đạt cực đại tại x = −2 và cực tiểu tại x = 0 .
D. Hàm số đạt cực đại tại x = 0 và cực tiểu tại x = −2 .

Câu 9:

Cho hàm số y = f ( x ) xác định và liên tục trên  và có đồ
thị là đường cong trong hình vẽ bên. Hỏi điểm cực tiểu
của đồ thị hàm số y = f ( x ) là điểm nào ?
A. x = −2.

Câu 10:

B. y = −2.

C. M ( 0; −2 ) .

D. N ( 2; 2 ) .

Cho hàm số y = f ( x ) có đồ thị là đường cong

trong hình vẽ bên. Hàm số f ( x) đạt cực tiểu tại
điểm nào dưới đây?
A. x = 1.
B. x = −1.
C. x = 2.
D. x = 0.
Câu 11: Cho hàm số y = f ( x ) liên tục trên đoạn [ 0; 4] có đồ thị như hình vẽ. Mệnh đề nào sau đây
đúng?
A. Hàm số đạt cực đại tại x = 4.

B. Hàm số đạt cực tiểu tại x = 0.

C. Hàm số đạt cực đại tại x = 2. D. Hàm số đạt cực tiểu tại x = 3.
Câu 12: Hàm số y = f ( x ) có bảng biến thiên sau đây:

Hàm số f ( x ) đạt cực tiểu tại điểm
A. x = 0 .

B. y = −1 .

C. y = 0 .

D. x = −1 .


Thông hiểu:

Câu 14: Đồ thị hàm số y = x3 − 9x2 + 24x + 4 có điểm cực tiểu và cực đại lần lượt là A ( x1; y1 ) và
B( x2 ; y2 ) . Giá trị y1 − y2 bằng:

A. y1 − y2 = 2 .

B. y1 − y2 = 4 .

B. yCĐ + yCT = −1.

Câu 16: Cho hàm số y =
A.

−4

D. y1 − y2 = 44 .

x 2 − 3x + 1
. Tính tổng giá trị cực đại yCĐ và giá trị cực tiểu yCT của hàm
x

Câu 15: Cho hàm số y =
số trên.
A. yCĐ + yCT = −5.

C. y1 − y2 = 0 .

C. yCĐ + yCT = 0.

D. yCĐ + yCT = −6.

x2 − 4x + 1
. Hàm số có hai điểm cực trị x1, x2 . Tích x1.x2 bằng
x +1
B.
C.
D.
−5
−1
−2

Câu 17: Đồ thị hàm số : y =

x2 + 2 x + 2
có 2 điểm cực trị nằm trên đường thẳng y = ax + b thì
1− x

a+ b bằng

A.

2

B.

C.

4

−4

D.

−2

1 4
x − 2 x 2 − 3 là :
2
A. y = −5 .
B. y = −3 .
C. x = 2 .
D. y = 0 .
3
2
Câu 19: Cho hàm số y = x − 6 x + 9 x − 2 ( C ) . Đường thẳng đi qua điểm A ( −1; 1) và vuông góc
Câu 18: Đường thẳng qua hai điểm cực tiểu của đồ thị hàm số y =

với đường thẳng đi qua hai điểm cực trị của ( C ) là:

1
3
A. y = − x + .
2
2

B. y =

1
3
x+ .
2
2

C. y = x + 3 .

D. x − 2 y − 3 = 0 .

Câu 20: Cho hàm số y = ( x − 1) ( x + 2 ) . Trung điểm của đoạn thẳng nối hai điểm cực trị của đồ
2

thị hàm số nằm trên đường thẳng nào dưới đây?
A. 2 x + y + 4 = 0.
B. 2 x + y − 4 = 0.
C. 2 x − y − 4 = 0.

D. 2 x − y + 4 = 0.

Câu 21: Cho hàm số y = 4 − x 2 . Mệnh đề nào dưới đây sai?
A. Cực tiểu của hàm số bằng 0.
C. Giá trị nhỏ nhất của hàm số bằng 0.

B. Cực đại của hàm số bằng 2.
D. Giá trị lớn nhất của hàm số bằng 2.

x5 x 4
1
+ − x 3 − . Mệnh đề nào sau đây là đúng?
5
2
5
A. Hàm số đạt cực đại tại x = −3 ; đạt cực tiểu tại x = 1 .
B. Hàm số đạt cực tiểu tại x = −3 ; đạt cực đại tại x = 1 .
C. Hàm số đạt cực tiểu tại x = −3 và x = 1 ; đạt cực đại tại x = 0 .
D. Hàm số đạt cực đại tại x = −3 và x = 1 ; đạt cực tiểu tại x = 0 .

Câu 22: Cho hàm số y =

Câu 23: Cho hàm số y = x 4 − 4 x 2 + 2 .Khẳng định nào sau đây là đúng ?
A. Hàm số đạt cực tiểu tại hai điểm x = − 2 và x = 2 .
B. Hàm số đạt cực tiểu tại điểm x = 0 .
C. Hàm số đạt cực tiểu tại điểm y = −2 .


(

)

D. Hàm số đạt cực đại tại hai điểm − 2; −2 và

(

)

2; −2 .

Câu 24: Giá trị cực đại của hàm số y = x + sin 2 x trên ( 0; π ) là:

π
3

3

3
π
3
.
B.
.
C.
.
D. +
.
+
+

6 2
3
2
3
2
3 2
Vận dụng thấp:
Câu 25: Biết đồ thị hàm số y = x 4 − 2 px 2 + q có điểm cực trị là M (1; 2) . Hãy tính khoảng cách
giữa điểm cực đại và cực tiểu của đồ thị hàm số?
A. 2 .
B. 26 .
C. 5 .
D. 2 .
A.

Câu 26: Cho hàm số y = x 3 + ax 2 + bx + c và giả sử A , B là hai điểm cực trị của đồ thị hàm số.
Khi đó, điều kiện nào sau đây cho biết AB đi qua gốc tọa độ O ?
A. 2b + 9 = 3a.
B. c = 0.
C. ab = 9c.
D. a = 0.
3
2
Câu 27: Biết đồ thị hàm số y = ax + bx + cx + d có 2 điểm cực trị là ( −1;18 ) và ( 3; −16 ) . Tính

a + b + c + d.
A. 0.

B. 1.

C. 2.

D. 3.

Hoạt động
2: Tìm số điểm cực trị của đồ thị hàm số (40’)
Mục tiêu: Học sinh nhận biết số cự trị thông qua tính toán, thông qua bảng biến thiên, thông qua
đồ thị hàm số.
Cách thức thực hiện :
- Gọi học sinh nêu định lí 2&3
- Tổ chức cho học sinh hoạt động các nhân và tập thể hoàn thành các mức độ bài tập.
- Lên bảng trình bày và giải thích các đáp án
- GV tổ chức cho HS nhận xét và chốt kiến thức.
Dạng 2: Tìm số điểm cực trị của đồ thị hàm số.
Phương pháp: Học sinh dùng định lí 2, định lí 3 để đọc bảng biến thiên và đọc đồ thị.
Loại 1: Cho bảng biến thiên.
Câu 1: Cho hàm số y = f ( x) xác định, liên tục trên ¡ và có bảng biến thiên như sau:

Khẳng định nào sau đây là khẳng định đúng ?
A. Hàm số có đúng một cực trị.
B. Hàm số có giá trị cực tiểu bằng 1.
C. Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng - 1 .
D. Hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = 1.
Nhận xét: Ta có thể mở rộng bài toán bằng cách thay đổi giả thiết để học sinh từ đó có thể tự mình
phát triển thành các câu hỏi khác từ bài tập của giáo viên.
Loại 2: Cho f '( x) hoặc đồ thị của f '( x)
Câu 2: Cho f '( x ) = x ( x - 1) ( x +1) , hỏi số điểm cực trị của hàm số y = f ( x ) .
2

A. 1.
Lời giải.

B. 2.

3

C. 3.

D. 4.


éx = 0
ê
f '( x ) = 0 Û x ( x - 1) ( x +1) = 0 Û êx = 1
ê
êx =- 1
ë
Do x =1 là nghiệm kép nên không là điểm cực trị của hàm số.
Do x = 0 là nghiệm đơn nên là điểm cực trị của hàm số.
Do x =- 1 là nghiệm bội lẻ nên là điểm cực trị của hàm số.
Chọn B.
Nhận xét: Như vậy học sinh có thể tự cho mình các ví dụ tương tự.
Câu 3: Hàm số f ( x ) có đạo hàm f '( x) trên khoảng K . Cho đồ thị của hàm số f '( x) trên khoảng
2

3

K như sau:
y

x
-1

O

2

Số điểm cực trị của hàm số f ( x ) trên K là:
A. 1.
B. 2.
C. 3.
D. 4.
Câu 4: Hàm số f ( x ) có đạo hàm f '( x) trên khoảng K . Cho đồ thị của hàm số f '( x ) trên khoảng
K như sau:
y

0

x

Số điểm cực trị của hàm số y = f ( x ) + 2018 trên K là:
A. 1.
Lời giải.

B. 2.

C. 3.

D. 4.

Dựa vào đồ thị ta thấy phương trình y ' = f '( x ) ; y ' = 0 có ba nghiệm đơn nên y ' đổi dấu khi qua
nghiệm đơn này. Do đó suy ra hàm số y = f ( x ) + 2018 có ba điểm cực trị. Chọn C.
Loại 3: Cho đồ thị của y = f ( x) .
Câu 5: Hàm số y = f ( x) có đồ thị như hình bên dưới. Hỏi đồ thị hàm số có mấy điểm cực trị:
y

x
O

A. 3.
Lời giải.

B. 2.

C. 1.

D. 0.


Căn cứ vào sự đi lên đi xuống của đồ thị ta thấy hàm số có 3 điểm cực trị. Chọn A.
Từ các phép biến đổi đồ thị hàm số chúng ta có thể cho học sinh tìm ra số cực trị của hàm mới.
Câu 6: Cho hàm số y = f ( x ) có đạo hàm và liên tục trên ¡ , hàm số y = f ( x ) đồ thị như hình vẽ:

y

0y

x

Số điểm cực trị của hàm số y = f ( x ) là:
Lời giải.
A.3.

x1

B.4.

C.7.

x2

0 x3 x4

D.0.

Từ đồ thị hàm số y = f ( x ) ta suy ra đồ thị hàm số y = f ( x ) .
Đồ thị hàm số y = f ( x ) có 7 điểm cực trị.
4. Củng cố: Qua bài học (3’)
- Nêu quy tắc tìm cực trị của hàm số ?
5. Hướng dẫn học bài. (2’)
- Giáo viên phát phiếu học tập tiết sau
Bổ sung – Rút kinh nghiệm.
...............................................................................................................................................................
...............................................................................................................................................................
...............................................................................................................................................................
Duyệt của tổ chuyên môn

-----------------------------------------------------------------------

x



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×