Tải bản đầy đủ

64 TS10 yen bai 1718 HDG

STT 64. ĐỀ TUYỂN SINH VÀO 10 TỈNH YÊN BÁI
NĂM HỌC 2017-2018
PHẦN 1. TRẮC NGHIỆM
Câu 1:
Câu 2:

Biểu thức 2 x  3 xác định khi và chỉ khi:
A. x  3 .
B. x  3 C

Câu 4:

D. x  3

C. 3  10

D. 16  4

C. x  3

D. x  3


C. y  1 x  2
3

D. y  2007  2018

Khẳng định nào sau đây sai?
A.

Câu 3:

C. x  3

9 2 2

B. 17  4 .

Biểu thức 2 x  3 xác định khi và chỉ khi:
A. x  3 .
B. x  3
Hàm số nào sau đây nghịch biến trên R?
A. y  2 x  1

B. y  2007

Câu 5:

Đồ thị hàm số nào sau đây là đường parabol có gốc tọa độ O (0; 0) là điểm thấp nhất của đồ thị
đó?
A. y  2 x 2
B. y  x 2
C. y   1 x 2
D. y  x 2
3

Câu 6:

Phương trình nào sau đây vô nghiệm?
A.  x2  2 x  1  0


Câu 7:

D. 16  4

B. x2  6 x  5  0

C. x2  5x  6  0.

D. x2  6 x  5  0.

Đế xác định chiều cao của một cái cây mà không đo trực tiếp người ta chọn vị trí nhìn từ C
cách gốc cây B một khoảng 25 m và góc nhìn ACB = 30° như hình minh họa dưới đây. Kết quả
tính
được
chiều
cao
của
cây

(làm
tròn
đến
cm)

A. 1443 cm.
Câu 9:

C. x2  3x  2  0

Cho hai số có tổng bằng -5 và tích bằng 6. Hai số đó là nghiệm cùa phương trình
A. x2  5x  6  0

Câu 8:

B. x2  x  1  0.

B. 4330 cm.

C. 1250 cm.

D. 2165 cm.

Hình chữ nhật ABCD có AB = 3 cm. và BC = 4 cm. quay một vòng quanh cạnh AB ta được một
hình trụ có diện tích toàn phần bằng:
A. 56 cm2 .
PHẦN 2. TỰ LUẬN

B. 44 cm2 .

C. 24 cm2 .

D. 56 cm2 .


Câu 10:
2
1) Vẽ đồ thị ( P) của hàm số y  2 x

2) Tìm tọa độ các giao điểm của đồ thị ( P) và đường thẳng (d ) : y  x  3
Câu 11:
1) Giải phương trình 3x - 2  0.

3x  2 y  1
2) Giải hệ phương trình 
 x  2 y  5
2
3) Cho phương trình x  mx  1  0, m là tham số. Tìm giá trị của m để phương trình có hai

nghiệm phân biệt x1 , x2 thỏa mãn  x12  1 x22  1  1.
Câu 12: Cho đường tròn (O) đường kính AB, lấy điểm C trên đường tròn (O) sao cho BC < AC. Gọi d là
tiếp tuyến tại B của đường tròn (O), kẻ đường kính CD, các đường thẳng AC, AD lần lượt cắt d
tại E,F. Đường thẳng qua A vuông góc với CD tại K cắt EF tại I
1) Chứng minh tứ giác OBIK nội tiếp.
2) Chứng minh AC.AE = AD.AF.
3) Chứng minh I là trung điềm của EF
Câu 13: Cho x,y là các số dương thỏa màn điều kiện x  y  6 . Tìm giá trị nhỏ nhất của biểu thức
P  3x  2 y 

6 8

x y

HƯỚNG DẪN GIẢI CHI TIẾT ĐỀ THI VÀO 10 YÊN BÁI - 2017
PHẦN 1. TRẮC NGHIỆM
Câu 1:

Biểu thức 2 x  3 xác định khi và chỉ khi:
A. x  3 .
B. x  3 C

C. x  3
Lời giải
ĐKXĐ: x  3  0  x  3  Chọn B

Câu 2:

D. x  3

Khẳng định nào sau đây sai?
A.

9 2 2

B. 17  4 .

C. 3  10
Lời giải

D. 16  4

9  10  3  10  C sai  Chọn C
Câu 3:

Hàm số nào sau đây nghịch biến trên R?
C. y  1 x  2
D. y  2007 x  2018
3
Lời giải
Hàm số y  2007 x  2018 nghịch biến vì có hệ số a < 0  Chọn D

A. y  2 x  1

B. y  2007

Câu 4:

Đồ thị hàm số nào sau đây là đường parabol có gốc tọa độ O (0; 0) là điểm thấp nhất của đồ thị
đó?
A. y  2 x 2
B. y   x 2
C. y   1 x 2
D. y  x 2
3
Lời giải
2
Hàm số y  x có a = 1 > 0  O (0; 0) là điểm thấp nhất của đồ thị đó  Chọn D

Câu 5:

Phương trình nào sau đây vô nghiệm?


A.  x2  2 x  1  0

B. x2  x  1  0.

C. x2  3x  2  0
Lời giải
2
Phương trình x  x  1  0. vô nghiệm vì   3  0

D. 16  4

Câu 6:

Cho hai số có tổng bằng -5 và tích bằng 6. Hai số đó là nghiệm của phương trình
A. x2  5x  6  0
B. x2  6 x  5  0
C. x2  5x  6  0.
D. x2  6 x  5  0.
Lời giải
2
Áp dụng công thức X  SX  P  0 ta chọn đáp án C

Câu 7:

Để xác định chiều cao của một cái cây mà không đo trực tiếp người ta chọn vị trí nhìn từ C
cách gốc cây B một khoảng 25m và góc nhìn ACB  30 như hình minh họa dưới đây. Kết
quả tính được chiều cao của cây là (làm tròn đến cm)

A. 1443 cm.

B. 4330 cm.

C. 1250 cm.
Lời giải

D. 2165 cm.

0
Ta có: AB  BC.tan gACB  25.tan g 30  14, 43m  1443cm  Chọn A

Câu 8:

Hình chữ nhật ABCD có AB = 3 cm và BC = 4 cm. quay một vòng quanh cạnh AB ta được
một hình trụ có diện tích toàn phần bằng:
A. 56 cm2 .
B. 44 cm2 .
C. 24 cm2 .
D. 56 cm2 .
Lời giải
2
2
Ta có: Stp  2 Rh  2 R  2 R(h  R)  2 .4(3  4)  56 cm Chọn A

PHẦN 2. TỰ LUẬN
Câu 9:

1) Cho biểu thức A  11  x . Tính giá trị của biếu thức A với x = 2
Lời giải
ĐKXĐ của A là x  11, x = 2 thỏa mãn ĐKXĐ, thay x = 2 vào A ta được:

A  11  2  9  3
Lời giải

1  x 3
 1

2) Rút gọn biểu thức B  
, với x  0; x  9
: 2
x  x  9x
 x 3


1  x 3
 1

Với x  0; x  9 ,ta có B  

: 2
x  x  9x
 x 3

x  x 3
.
x 3



x 3



x 3

x 3

 3

Câu 10: 1) Vẽ đồ thị ( P) của hàm số
- Bảng giá trị

Lời giải
2) Tìm tọa độ các giao điểm của đồ thị ( P) và đường thẳng (d ) : y  x  3
Phương trình hoành độ giao điểm 2 x2  x  3  2 x2  x  3  0  x1  1 hoặc x2  1,5

 y1  2 hoặc x1  4,5 . Vậy tọa độ giao điểm là A(1; 2) và B(1,5; 4,5)
Câu 11: 1) Giải phương trình 3x - 2  0
Lời giải
2
Ta có: 3x - 2  0  3x  2  x  .
3

3x  2 y  1 1
2) Giải hệ phương trình 
 x  2 y  5  2 
Lời giải
Lấy (1) +(2) ta được: 4 x  4  x  1 , thay x  1 vào (2) ta được y  2 . Vậy nghiệm của hệ
phương trình là: S   1;2 
2
3) Cho phương trình x  mx  1  0, m là tham số. Tìm giá trị của m để phương trình có hai







nghiệm phân biệt x1 , x2 thỏa mãn x12  1 x22  1  1.
Lời giải
- Phương trình: x  mx  1  0 có   m  4  0 , Vậy phương trình luôn có hai nghiệm phân
2

2

biệt x1 , x2 .







2
2
2 2
2
2
2
- Ta có: x1  1 x2  1  1  x1 x2  x1  x2  1  1   x1 x2   (x1  x 2 )  2 x1x 2  2  0
2


c
 c   b 
       2  2  0  1  m2  2  0  m2  1  m  1 (thỏa mãn) hoặc m  1
a
a  a 
(thỏa mãn). Vậy 2 giá trị cần tìm của m là m  1 hoặc m  1
2

2

Câu 12: Cho đường tròn (O) đường kính AB, lấy điểm C trên đường tròn (O) sao cho BC < AC. Gọi d là
tiếp tuyến tại B của đường tròn (O), kẻ đường kính CD, các đường thẳng AC, AD lần lượt cắt d
tại E,F. Đường thẳng qua A vuông góc với CD tại K cắt EF tại I

1) Chứng minh tứ giác OBIK nội tiếp.
Lời giải
OKI  900 

  Tứ giác OKIB nội tiếp
OBI  900 

2) Chứng minh AC.AE = AD.AF.
Lời giải
- Ta có

CAB  CBE (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BC)
CAB phụ với FAB

CBE phụ với CEB


 FAB  CEB

- Mà FAB  ADC  ADC  AEF
- Xét ADC; AFE có
A chung

ADC  AEF
 ADC đồng dạng AFE
AC AF

 AC. AE  AD. AF (đpcm)

AD AE
3) Chứng minh I là trung điểm của EF
- Ta có:
ACD  AFE ( ADC đồng dạng AFE chứng minh trên)
ACD  DAK (cùng phụ với CAK )
 AFE  DAK  AFI cân tại I  IA  IF 1

- Ta có:
ADC  AEF ( ADC đồng dạng AFE chứng minh trên)

ADC  IAE (cùng phụ với DAK )
 IAE  AEF  AIE cân tại I  IA  IE  2 

- Từ 1 và  2   IA  IE  IF  I là trung điểm của EF
Câu 13: Cho x,y là các số dương thỏa mãn điều kiện x  y  6 . Tìm giá trị nhỏ nhất của biểu thức
6 8
P  3x  2 y   .
x y
Lời giải
- Dùng máy tính casio ta chọn được điểm rơi tại x = 2, y = 4. Nên ta có:
P  3x  2 y 

6 8  3x 6   2 y 8 
   1,5 x  1,5 y
    
x y  2 x  4 y

- Áp dụng BĐT Cô-si cho từng cặp số trong ngoặc ta được
P  6  4  1,5(x  y)  6  4  1,5.6  19

 3x 6
2 x
 x  2

x  2
2y 8


  y  4  
Dấu bằng xảy ra khi: 
y
y  4
4
x  y  6

x  y  6



x  2
Vậy Pmin = 19 tại 
.
y  4



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×