Tải bản đầy đủ

thầy đặng thành nam hướng dẫn giải chi tiết đề thi thử chuẩn cấu trúc thi THPT quốc gia 2020 đề số 01

TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

1

ĐỀ THI THAM KHẢO
(Đề có 06 trang)

ĐỀ THI THỬ THPT QUỐC GIA NĂM 2020
ĐỀ SỐ 1

THẦY ĐẶNG THÀNH NAM

Thời gian làm bài: 90 phút, không kể thời gian phát đề
(Đề thi có 50 câu trắc nghiệm)

Môn thi: TOÁN

Mã đề thi 001

Họ, tên thí sinh: .....................................................................

Số báo danh: ..........................................................................
Câu 1. Cho a , b , c
y  a x , y  b x , y  logc x .

là các số thực dương khác 1 . Hình vẽ bên là đồ thị các hàm số

Mệnh đề nào sau đây đúng?
A. c  b  a.
B. a  c  b.
C. c  a  b.
D. a  b  c.
x
x 2
Câu 2. Số nghiệm thực của phương trình 4  2  3  0 là:
A. 1 .
B. 2 .
C. 3 .
D. 0 .
Câu 3. Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

x2
.
x 1
D. y  x 4  2 x3  2 .

A. y  x3  3 x 2  2 .

B. y 

C. y   x3  3x 2  2 .

Câu 4. Hàm số y  f  x  có đạo hàm trên  \ 2; 2 , có bảng biến thiên như sau:

Gọi k , l lần lượt là số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y 

k l .
A. k  l  3 .

B. k  l  4 .


C. k  l  5 .

1
. Tính
f  x   2018

D. k  l  2 .

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 1


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

2

Câu 5. Cho khối chóp S . ABCD có đáy ABCD là hình chữ nhật. Một mặt phẳng thay đổi nhưng luôn
song song với đáy và cắt các cạnh bên SA , SB , SC , SD lần lượt tại M , N , P , Q . Gọi M  , N  , P ,
SM
để thể
Q lần lượt là hình chiếu vuông góc của M , N , P , Q lên mặt phẳng  ABCD  . Tính tỉ số
SA
tích khối đa diện MNPQ.M N PQ đạt giá trị lớn nhất.
1
3
2
1
A. .
B.
.
C.
.
D.
.
3
4
3
2
Câu 6. Cho hàm số y  f  x  có đạo hàm và liên tục trên  . Biết rằng đồ thị hàm số y  f   x  như
hình 2 dưới đây.

Lập hàm số g  x   f  x   x 2  x . Mệnh đề nào sau đây đúng?
A. g  1  g 1 .

B. g 1  g  2  .

C. g 1  g  2  .

D. g  1  g 1 .

Câu 7. Cho lăng trụ tam giác đều ABC. ABC  có cạnh đáy bằng a và AB  BC  . Tính thể tích V của
khối lăng trụ đã cho.

a3 6
a3 6
7a3
.
B. V  a 3 6 .
C. V 
.
D. V 
.
8
8
4
Câu 8. Cho hàm số f  x   x 4  4 x 3  4 x 2  a . Gọi M , m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất
A. V 

của hàm số đã cho trên đoạn  0; 2 . Có bao nhiêu số nguyên a thuộc đoạn  3;3 sao cho M  2m ?
A. 3 .
B. 7 .
C. 6 .
D. 5 .

  

Câu 9. Trong không gian với hệ trục tọa độ Oxyz , cho a  i  2 j  3k . Tọa độ của vectơ a là:
A.

 1; 2; 3 .

B.

 3; 2; 1 .

Câu 10. Trong không gian với hệ tọa độ Oxyz ,
phương trình mặt cầu tâm C bán kính AB .
2
2
2
A.  x  10    y  17    z  7   8 .
C.

 x  10 

2

2

2

  y  17    z  7   8 .

 2; 3; 1 .
A  3; 4; 2  , B  5;
C.

B.
D.

2

 2; 1; 3 .
2  , C  10; 17; 7  .
D.

6;
2

Viết

2

 x  10    y  17    z  7   8 .
2
2
2
 x  10    y  17    z  7   8 .

Câu 11. Giá trị lớn nhất của hàm số y   x 4  2 x 2  2 trên  0;3 là
A. 61 .

B. 3 .

C. 61 .

1
Câu 12. Cho một cấp số cộng  un  có u1  , u8  26. Tìm công sai d
3
3
11
10
A. d  .
B. d  .
C. d  .
11
3
3

D. 2 .

D. d 

3
.
10

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 2


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

3

Câu 13. Tập hợp tất cả các điểm biểu diễn các số phức z thỏa mãn: z  2  i  4 là đường tròn có tâm I
và bán kính R lần lượt là:
A. I  2; 1 ; R  4 .

B. I  2; 1 ; I  2; 1 .

C. I  2; 1 ; R  4 .

D. I  2; 1 ; R  2 .

Câu 14. Cho số phức z . Gọi A , B lần lượt là các điểm trong mặt phẳng  Oxy  biểu diễn các số phức z
và 1  i  z . Tính z biết diện tích tam giác OAB bằng 8 .
A. z  4 .

B. z  4 2 .

C. z  2 .

D. z  2 2 .

Câu 15. Cho hình hộp chữ nhật ABCD. ABC D có đáy ABCD là hình vuông cạnh a 2 , AA  2a .
Tính khoảng cách giữa hai đường thẳng BD và CD .
a 5
2a 5
A. 2a .
B. a 2 .
C.
.
D.
.
5
5
Câu 16. Cho f  x   x3  3x 2  6 x  1 . Phương trình

f  f  x   1  1  f  x   2 có số nghiệm thực là

A. 4 .
B. 6 .
C. 7 .
D. 9 .
Câu 17. Tính thể tích V của khối trụ có bán kính đáy và chiều cao đều bằng 2 .
A. V  8 .
B. V  12 .
C. V  16 .
D. V  4 .
x
x 1
Câu 18. Giá trị của tham số m để phương trình 4  m.2  2 m  0 có hai nghiệm x1 , x2 thoả mãn

x1  x2  3 là
A. m  2 .
B. m  3 .
C. m  4 .
D. m  1 .
Câu 19. Cho đa giác đều 32 cạnh. Gọi S là tập hợp các tứ giác tạo thành có 4 đỉnh lấy từ các đỉnh của
đa giác đều. Chọn ngẫu nhiên một phần tử của S . Xác suất để chọn được một hình chữ nhật là
1
1
1
3
A.
.
B.
.
C.
.
D.
.
341
385
261
899
mx  4
Câu 20. Tìm tất cả các giá trị thực của tham số m sao cho hàm số y 
nghịch biến trên khoảng
xm
 ;1 ?
A. 2  m  2 .

B. 2  m  2 .

C. 2  m  1 .

Câu 21. Cho hàm số y  ln  e x  m 2  . Với giá trị nào của m thì y  1 
A. m   e.

B. m  e.

1
C. m  .
e

D. 2  m  1 .
1
.
2

D. m  e.

Câu 22. Kết quả của I   xe x dx là

x2 x
x2 x x
A. I  e  C .
B. I  e  e  C .
2
2
x
x
C. I  xe  e  C .
D. I  e x  xe x  C .
4
5
3
Câu 23. Cho hàm số f  x  có đạo hàm f   x    x  1  x  2   x  3 . Số điểm cực trị của hàm số
f  x  là

A. 5 .

B. 3 .

C. 1 .

D. 2 .

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 3


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

4

 z  3  2i  1
Câu 24. Cho hai số phức z , w thỏa mãn 
. Tìm giá trị nhỏ nhất Pmin của biểu thức
 w  1  2i  w  2  i
P  zw .
A. Pmin 

3 2 2
.
2

B. Pmin 

3 2 2
.
2

C. Pmin  2  1 .

D. Pmin 

5 2 2
.
2

1

Câu 25. Tập xác định của hàm số y   x  1 5 là:
A. 1;   .

B.  .

C.

 0;    .

D. 1;   .

Câu 26. Cho f  x  , g  x  là các hàm số xác định và liên tục trên  . Trong các mệnh đề sau, mệnh đề
nào sai?
A.   f  x   g  x   dx   f  x  dx   g  x  dx .
C.

 2 f  x  dx  2  f  x  dx .

B.
D.

 f  x  g  x  dx   f  x  dx. g  x  dx .
  f  x   g  x  dx   f  x  dx   g  x  dx .

Câu 27. Cho hai số thực x , y thỏa mãn: 2 y 3  7 y  2 x 1  x  3 1  x  3  2 y 2  1 . Tìm giá trị lớn nhất
của biểu thức P  x  2 y .
A. P  8 .
B. P  10
C. P  4 .
Câu 28. Hàm số nào sau đây không đồng biến trên khoảng  ;    ?

D. P  6 .

x2
.
B. y  x5  x3  10 .
C. y  x3  1 .
D. y  x  1 .
x 1
Câu 29. Cho hàm số y  f  x  liên tục trên các khoảng  ;0  và  0;   , có bảng biến thiên như sau

A. y 

Tìm m để phương trình f  x   m có 4 nghiệm phân biệt.
A. 3  m  2 .
B. 3  m  3 .
C. 4  m  2 .
D. 4  m  3 .
2
Câu 30. Kí hiệu z1 là nghiệm phức có phần ảo âm của phương trình 4 z  16 z  17  0. Trên mặt phẳng
3
tọa độ điểm nào dưới đây là điểm biểu diễn số phức w  1  2i  z1  i ?
2
A. M  3;2  .
B. M  2;1 .
C. M  2;1 .
D. M  3; 2  .
Câu 31. Cho mặt phẳng  P  đi qua các điểm A  2; 0; 0  , B  0; 3; 0  , C  0; 0;  3 . Mặt phẳng  P 
vuông góc với mặt phẳng nào trong các mặt phẳng sau?
A. 3 x  2 y  2 z  6  0 . B. x  y  z  1  0 .
C. x  2 y  z  3  0 .
D. 2 x  2 y  z  1  0 .
Câu 32. Cho hai số thực x , y thoả mãn phương trình x  2i  3  4 yi . Khi đó giá trị của x và y là:
1
1
1
A. x  3 , y   .
B. x  3 , y  2 .
C. x  3i , y  .
D. x  3 , y  .
2
2
2

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 4


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

5

Câu 33. Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng  P  : x  y  z  1  0 , đường thẳng
x  15 y  22 z  37
và mặt cầu  S  : x 2  y 2  z 2  8 x  6 y  4 z  4  0 . Một đường thẳng   


1
2
2
thay đổi cắt mặt cầu  S  tại hai điểm A , B sao cho AB  8 . Gọi A , B là hai điểm lần lượt thuộc mặt
d:

phẳng  P  sao cho AA , BB cùng song song với d . Giá trị lớn nhất của biểu thức AA  BB là
8  30 3
24  18 3
12  9 3
16  60 3
.
B.
.
C.
.
D.
.
9
5
5
9
Câu 34. Cho hình chóp S . ABCD có đáy là hình thang vuông tại A , B . Biết SA   ABCD  ,

A.

AB  BC  a , AD  2a , SA  a 2 . Gọi E là trung điểm của AD . Tính bán kính mặt cầu đi qua các
điểm S , A , B , C , E .
a 6
a 3
a 30
A. a .
B.
.
C.
.
D.
.
3
2
6
3

Câu 35. Cho hàm số y  f  x  liên tục, luôn dương trên  0;3 và thỏa mãn I   f  x  dx  4 . Khi đó
0
3



1 ln  f  x  

giá trị của tích phân K   e



 4 dx là:

0

A. 3e  14 .
Câu 36.

B. 14  3e .

Cho x , y


P   log x y  1  8  log


A. 30

C. 4  12e .

D. 12  4e .

là các số thực thỏa mãn 1  x  y . Tìm giá trị nhỏ nhất của biểu thức
2

2

y
x

y
 .
x 
B. 18 .

C. 9 .

D. 27 .
2

Câu 37. Cho hàm số y  f  x  có đạo hàm f   x    x  1  x  2 x  với x   . Có bao nhiêu giá trị
2

nguyên dương của tham số m để hàm số f  x 2  8 x  m  có 5 điểm cực trị?
A. 16
B. 18
C. 15 .
Câu 38. Cho tập hợp M có 10 phần tử. Số tập con gồm 2 phần tử của M là
A. A102 .
B. C102 .
C. 10 2 .

D. 17 .
D. A108 .

 8 4 8
Câu 39. Trong không gian Oxyz , cho tam giác nhọn ABC có H  2; 2;1 , K   ; ;  , O lần lượt là
 3 3 3
hình chiếu vuông góc của A , B , C trên các cạnh BC , AC , AB . Đường thẳng d qua A và vuông góc
với mặt phẳng  ABC  có phương trình là
x y6 z6
.


1
2
2
4
17
19
x
y
z
9
9 
9 .
C. d :
1
2
2

A. d :

8
2
2
y
z
3
3
3.
B. d :
1
2
2
x

D. d :

x  4 y 1 z 1
.


1
2
2

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 5


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

6

Câu 40. Người ta trồng hoa vào phần đất được tô màu đen Được giới hạn bởi cạnh AB , CD đường trung
bình MN của mảnh đất hình chữ nhật ABCD và một đường cong hình sin . Biết AB  2  m  ,

AD  2  m  . Tính diện tích phần còn lại.

A. 4  1 .

B. 4   1 .

C. 4  2 .
D. 4  3 .
  

Câu 41. Trong không gian với hệ trục tọa độ Oxyz , cho OA  2i  2 j  2k , B  2; 2;0  và C  4;1;  1 .
Trên mặt phẳng  Oxz  , điểm nào dưới đây cách đều ba điểm A , B , C .
1 
 3
A. N  ; 0;
.
2 
 4

1 
3
B. P  ; 0;
.
2 
4

1
 3
C. Q  ; 0;  .
2
 4

1
3
D. M  ; 0;  .
2
4

Câu 42. Cho tứ diện OABC có OA , OB , OC đôi một vuông góc và OB  OC  a 6 , OA  a . Tính
góc giữa hai mặt phẳng  ABC  và  OBC  .
A. 45 .

B. 90 .

C. 60 .
3x  4
Câu 43. Tìm số tiệm cận của đồ thị hàm số y 
.
x 1
A. 1 .
B. 0 .
C. 2 .
Câu 44. Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d

D. 30 .

D. 3 .
vuông góc với mặt phẳng

 P  : 4 x  z  3  0 . Vec-tơ nào dưới đây là một vec-tơ chỉ phương của đường thẳng d ?




A. u   4;  1; 3 .
B. u   4; 0;  1 .
C. u   4;1; 3 .
D. u   4; 1;  1 .
Câu 45. Trong không gian Oxyz , cho mặt phẳng  P  đi qua điểm M 1; 2;3 và cắt các trục Ox , Oy ,
Oz lần lượt tại các điểm A , B , C . Viết phương trình mặt phẳng  P  sao cho M là trực tâm của tam
giác ABC .
x y z
A.    3 .
1 2 3
C. x  2 y  3 z  14  0 .

B. 6 x  3 y  2 z  6  0 .
D. x  2 y  3 z  11  0 .

Câu 46. Các giá trị x thỏa mãn bất phương trình log 2  3x  1  3 là :

10
1
.
B. x  3 .
C.  x  3 .
D. x  3 .
3
3
Câu 47. Cho tam giác SOA vuông tại O có MN // SO với M , N lần lượt nằm trên cạnh SA , OA như
hình vẽ bên dưới. Đặt SO  h không đổi. Khi quay hình vẽ quanh SO thì tạo thành một hình trụ nội tiếp
hình nón đỉnh S có đáy là hình tròn tâm O bán kính R  OA . Tìm độ dài của MN theo h để thể tích
khối trụ là lớn nhất.
A. x 

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 6


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

A. MN 

h
.
3

B. MN 

h
.
4

C. MN 

h
.
6

D. MN 

7

h
.
2

4

Câu 48. Biết

 x ln  x

2

 9  dx  a ln 5  b ln 3  c , trong đó a , b , c là các số nguyên. Giá trị của biểu

0

thức T  a  b  c là
A. T  9 .
B. T  8 .
C. T  11 .
D. T  10 .
Câu 49. Lăng trụ tam giác đều có độ dài tất cả các cạnh bằng 3 . Thể tích khối lăng trụ đã cho bằng
27 3
9 3
9 3
27 3
.
B.
.
C.
.
D.
.
2
2
4
4
Câu 50. Tìm giá trị thực của tham số m để hàm số y  x3  3x 2  mx đạt cực tiểu tại x  2 .
A. m  2 .
B. m  2 .
C. m  1 .
D. m  0 .

A.

-------------- HẾT ---------------

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 7


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

8

ĐÁP ÁN ĐỀ THI
1
A
26
B

2
B
27
C

3
A
28
A

4
C
29
A

5
C
30
A

6
C
31
D

7
C
32
D

8
D
33
B

9
A
34
A

10
B
35
D

11
B
36
D

12
B
37
C

13
C
38
B

14
A
39
D

15
D
40
B

16
A
41
B

17
A
42
D

18
C
43
C

19
D
44
B

20
C
45
C

21
A
46
B

22
C
47
A

23
B
48
B

24
D
49
D

25
A
50
D

HƯỚNG DẪN GIẢI CHI TIẾT
Câu 1.
Lời giải

Vì hàm số y  log c x nghịch biến nên 0  c  1 , các hàm số y  a x , y  b x đồng biến nên a  1; b  1 nên
c là số nhỏ nhất trong ba số.
Đường thẳng x  1 cắt hai hàm số y  a x , y  b x tại các điểm có tung độ lần lượt là a và b , dễ thấy
a  b . Vậy c  b  a
Câu 2.
Lời giải
t  1
Đặt t  2 x , t  0 ta được phương trình t 2  4t  3  0  
t  3
Với 2 x  1  x  0 và với 2 x  3  x  log 2 3 .
Câu 3.
Lời giải
Dạng đồ thị hình bên là đồ thị hàm đa thức bậc 3 y  ax3  bx 2  cx  d có hệ số a  0 .
Do đó, chỉ có đồ thị ở đáp án A. là thỏa mãn.
Câu 4.
Lời giải
1
Vì phương trình f  x   2018 có ba nghiệm phân biệt nên đồ thị hàm số y 
có ba đường
f  x   2018
tiệm cận đứng.
Mặt khác, ta có:
1
1
1
nên đường thẳng y  
là đường tiệm cận ngang của đồ thị
lim y  lim

x  f  x   2018
x 
2019
2019
hàm số y 

1
.
f  x   2018

Và lim y  lim
x 

y

x 

1
 0 nên đường thẳng y  0 là đường tiệm cận ngang của đồ thị hàm số
f  x   2018

1
.
f  x   2018
BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 8


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

9

Vậy k  l  5 .
.
Câu 5.
Lời giải

Đặt

SM
 k với k   0;1 .
SA

MN SM

 k  MN  k. AB
AB
SA
MQ SM
Xét tam giác SAD có MQ // AD nên

 k  MQ  k . AD
AD
SA
Kẻ đường cao SH của hình chóp. Xét tam giác SAH có:
MM  AM SA  SM
SM
MM  // SH nên


 1
 1  k  MM   1  k  .SH .
SH
SA
SA
SA
Ta có VMNPQ.M N PQ  MN .MQ.MM   AB. AD.SH .k 2 . 1  k  .

Xét tam giác SAB có MN // AB nên

1
Mà VS . ABCD  SH . AB. AD  VMNPQ.M N PQ  3.VS . ABCD .k 2 . 1  k  .
3
Thể tích khối chóp không đổi nên VMNPQ.M N PQ đạt giá trị lớn nhất khi k 2 . 1  k  lớn nhất.
3

2 1  k  .k .k

1  2  2k  k  k 
4
.
 
 
2
2
3
 27
2
SM 2
Đẳng thức xảy ra khi và chỉ khi: 2 1  k   k  k  . Vậy
 .
3
SA 3
Câu 6.
Lời giải
Xét hàm số h  x   f   x    2 x  1 . Khi đó hàm số h  x  liên tục trên các đoạn  1;1 , 1;2 và có g  x 

Ta có k 2 .  k  1 

là một nguyên hàm của hàm số y  h  x  .
y
5

S2
3

S1

-1
O

1

2

x

-1

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 9


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

10

 x  1
x  1

Do đó diện tích hình phẳng giới hạn bởi 

 y  f  x
 y  2 x  1
1

S1 



1

1

f   x    2 x  1 dx    f   x    2 x  1  dx  g  x  1  g 1  g  1 .

1

1

Vì S1  0 nên g 1  g  1 .

x  1
x  2

Diện tích hình phẳng giới hạn bởi 

 y  f  x
 y  2 x  1
2

2

2

S 2   f   x    2 x  1 dx    2 x  1  f   x   dx   g  x  1  g 1  g  2  .
1

1

Vì S 2  0 nên g 1  g  2  .
Câu 7.
Lời giải

Gọi E là điểm đối xứng của C qua điểm B . Khi đó tam giác ACE vuông tại A .

 AE  4a 2  a 2  a 3 .
Mặt khác, ta có BC   BE  AB nên tam giác ABE vuông cân tại B .
AE a 3 a 6
 AB 

.

2
2
2
2

a 6
a 2
2
Suy ra: AA  
.
  a 
2
 2 
Vậy V 

a 2 a2 3 a3 6
.
.

2
4
8

Câu 8.
Lời giải
4

3

2

Xét hàm số g  x   x  4 x  4 x  a .

x  0
g   x   4 x3  12 x 2  8 x ; g   x   0  4 x 3  12 x 2  8 x  0   x  1 .
 x  2
Bảng biến thiên

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 10


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

11

Do 2m  M  0 nên m  0 suy ra g  x   0 x   0; 2 .
a  1  0
 a  1
Suy ra 

.
a  0
a  0
Nếu a  1 thì M  a , m  a  1  2  a  1  a  a  2 .
Nếu a  0 thì M  a  1 , m  a  2a  a  1  a  1 .
Do đó a  2 hoặc a  1 , do a nguyên và thuộc đoạn  3;3 nên a  3; 2;1; 2;3 .
Vậy có 5 giá trị của a thỏa mãn đề bài.
Câu 9.


  
Ta có: a  i  2 j  3k  a  1; 2; 3 .

Lời giải

Câu 10.
Lời giải
Ta có AB  2 2 .
2
2
2
Phương trình mặt cầu tâm C bán kính AB :  x  10    y  17    z  7   8 .
Câu 11.
Lời giải
3

Ta có: y  4 x  4 x .

 x  0   0;3

Cho y  0  4 x 3  4 x  0   x  1  0;3 .
 x  1 0;3
 


 y  0   2 ; y 1  3 ; y  3  61 .
Vậy giá trị lớn nhất của hàm số là 3 .
Câu 12.
Lời giải
1
11
u8  u1  7d  26   7 d  d  .
3
3
Câu 13.

Lời giải
Gọi số phức z  x  iy  x, y   
Ta có:
2
2
z  2  i  4   x  2     y  1 i  4   x  2    y  1  16
Vậy tập hợp tất cả các điểm biểu diễn các số phức z thỏa mãn: z  2  i  4 là đường tròn có
tâm I  2;  1 và có bán kính R  4 .
Câu 14.
Lời giải
Ta có OA  z , OB  1  i  z  2 z , AB  1  i  z  z  iz  z .
Suy ra OAB vuông cân tại A ( OA  AB và OA2  AB 2  OB 2 )
BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 11


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

12

1
1 2
Ta có: S OAB  OA. AB  z  8  z  4 .
2
2
Câu 15.

Lời giải

Gọi O , O lần lượt là tâm của hai mặt đáy.Khi đó tứ giác COOC  là hình bình hành và C O 

AC
a
2

Do BD // B D   BD //  CBD  nên d  BD; CD   d  O;  CBD    d  C ;  CBD   .
 BD  AC 
Ta có : 
 BD   COOC     CBD   COOC  
 BD  CC 
Lại có  CBD    COOC   CO .
Trong CC O hạ C H  CO  C H   CBD   d  BD; CD  C H
Khi đó :

2 5a
1
1
1
1
1
5
.



 2  2  C H 
2
2
2
2
5
C H
CC  C O
 2a  a 4a

Câu 16.
Lời giải
Đặt t  f  x   1  t  x  3 x  6 x  1 .
3

Khi đó

2

f  f  x   1  1  f  x   2 trở thành:

t  1
t  1
3
f t   1  t  1  
2
2
 f  t   1  t  2t  1
t  4t  8t  1  0
t   1

t  t2   1;1
 t  t1   2; 1
.

 
t

t


1;1


t

t

5;
6




2
3


 t  t  1; 6 
3

Vì g  t   t 3  4t 2  8t  1 ; g  2   7 ; g  1  4 ; g 1  10 ; g  5  14 ; g  6   25 .
Xét phương trình t  x 3  3 x 2  6 x  1 là pt hoành độ giao điểm của ...
Ta có

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 12


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

13

Dựa vào bảng biến thiên, ta có
+ Với t  t2   1;1 , ta có d cắt tại 3 điểm phân biệt, nên phương trình có 3 nghiệm.
+ Với t  t3   5;6  , ta có d cắt tại 1 điểm, nên phương trình có 1 nghiệm.
Vậy phương trình đã cho có 4 nghiệm.
Câu 17.
Lời giải
Thể tích khối trụ V   r 2 h   .2 2.2  8 .
Câu 18.
Lời giải
Đặt t  2 , t  0 . Phương trình trở thành: t  2 mt  2m  0 1 .
x

2

Phương trình đã cho có hai nghiệm x1 , x2 thỏa mãn x1  x2  3 khi và chỉ khi phương trình 1 có hai
nghiệm dương phân biệt thỏa mãn t1.t2  2 x1.2 x2  2 x1  x2  23  8 .

  m 2  2m  0

 S  2m  0
Khi đó phương trình 1 có: 
m4.
 P  2m  0
 P  2m  8
Câu 19.
Lời giải
Số phần tử của không gian mẫu là số cách chọn 4 đỉnh trong 32 đỉnh để tạo thành tứ giác,   C324 .
Gọi A là biến cố "chọn được hình chữ nhật".
Để chọn được hình chữ nhật cần chọn 2 trong 16 đường chéo đi qua tâm của đa giác, do đó số phần tử
của A là C162 .
C162
3
Xác suất biến cố A là P  A   4 
.
C32 899
Câu 20.
Lời giải
m 4
Tập xác định D   \ m . Ta có y 
. Hàm số nghịch biến trên khoảng  ;1  y   0 ,
 x  m 2
2

m2  4  0
x   ;1  
 2  m  1 .
1   m
Câu 21.
Lời giải
x

e
e
 y 1 
.
2
e m
e  m2
1
e
1
Khi đó y 1  
  2e  e  m 2  m   e .
2
2
em
2
Câu 22.
Lời giải
Cách 1: Sử dụng tích phân từng phần ta có
I   xe x dx   x de x  xe x   e x dx  xe x  e x  C .
Ta có y 

x

Cách 2: Ta có I    xe x  e x  C   e x  xe x  e x  xe x .

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 13


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

14

Câu 23.
Lời giải

 x  1
Ta có f   x   0   x  2 .
 x  3
Ta có bảng biến thiên của hàm số f  x  :

Ta có bảng biến thiên của hàm số f  x  :

Dựa vào bảng biến thiên ta thấy số điểm cực trị của hàm số f  x  là 3 .
Câu 24.
Lời giải
Giả sử z  a  bi ; w  x  yi  a, b, x, y    . Ta có
2

2

z  3  2i  1   a  3   b  2   1 . Suy ra tập hợp điểm M biểu diễn số phức z là hình tròn tâm
I  3; 2  , bán kính R  1 .
2

2

2

2

w  1  2i  w  2  i   x  1   y  2    x  2    y  1  x  y  0 . Suy ra tập hợp điểm N biểu
diễn số phức w là nửa mặt phẳng giới hạn bởi đường thẳng  : x  y  0

Ta có d  I ,   

5
. Gọi H là hình chiếu của I trên  .
2

Khi đó z  w  MN  d  I ,    R 

5 2
5 2
 1 . Suy ra Pmin 
1 .
2
2

Câu 25.
Lời giải
Hàm số xác định khi: x  1  0  x  1 . Vậy tập xác định: D  1;    .

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 14


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

15

Câu 26.
Lời giải
Nguyên hàm không có tính chất nguyên hàm của tích bằng tích các nguyên hàm.
Hoặc B, C, D đúng do đó là các tính chất cơ bản của nguyên hàm nên A sai.
Câu 27.
Lời giải
Chọn C
2 y 3  7 y  2 x 1  x  3 1  x  3  2 y 2  1 .





 2 y 3  3 y 2  3 y  1   y  1  2 1  x  1  x  3 1  x  2 1  x .
3

 2  y  1   y  1  2



3

1 x



1  x 1 .

Xét hàm số f  t   2t 3  t trên  0;    .
Ta có: f   t   6t 2  1  0 với t  0  f  t  luôn đồng biến trên  0;    .
Vậy 1  y  1  1  x  y  1  1  x .
 P  x  2 y  x  2  2 1  x với  x  1 .

Xét hàm số g  x   2  x  2 1  x trên  ;1 .

1
1  x 1

. g  x   0  x  0 .
1 x
1 x
Bảng biến thiên g  x  :
Ta có: g   x   1 

Từ bảng biến thiên của hàm số g  x  suy ra giá trị lớn nhất của P là: max g  x   4 .
  ;1

Câu 28.
Lời giải
Vì hàm số y 

x2
có tập xác định D   \ 1 nên hàm số không đồng biến trên  ;  
x 1

Câu 29.
Lời giải
Dựa vào bảng biến thiên ta thấy phương trình có 4 nghiệm phân biệt khi 3  m  2 .
Câu 30.
Lời giải
1

z1  2  i

2 .
Ta có: 4 z 2  16 z  17  0  
z  2  1 i
 2
2

1  3
3

Khi đó: w  1  2i  z1  i  1  2i   2  i   i  3  2i  tọa độ điểm biểu diễn số phức w là:
2
2  2

M  3; 2  .
BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 15


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

16

Câu 31.
Lời giải
x y z
Phương trình mặt phẳng  P  theo đoạn chắn:
 
 1  3 x  2 y  2 z  6  0 .
2 3 3
Dễ thấy mặt phẳng  P  vuông góc với mặt phẳng có phương trình 2 x  2 y  z  1  0 vì tích vô hướng
của hai vec-tơ pháp tuyến bằng 0 .
Câu 32.
Lời giải

x  3
x  3

Từ x  2i  3  4 yi  

1.
y

2  4 y

2
1
Vậy x  3 , y  .
3
Câu 33.
Lời giải

Mặt cầu  S  có tâm I  4;3; 2  và bán kính R  5 .
Gọi H là trung điểm của AB thì IH  AB và IH  3 nên H thuộc mặt cầu  S  tâm I bán kính
R  3 .
Gọi M là trung điểm của AB thì AA  BB  2 HM , M nằm trên mặt phẳng  P  .

4
5
 R nên  P  cắt mặt cầu  S  và sin  d ;  P    sin  
. Gọi K là
3
3 3
hình chiếu của H lên  P  thì HK  HM .sin  .
Vậy để AA  BB lớn nhất thì HK lớn nhất
4
43 3

.
 HK đi qua I nên HK max  R  d  I ;  P    3 
3
3
 4  3 3  3 3 24  18 3
Vậy AA  BB lớn nhất bằng 2 
.

.
5
3  5

Mặt khác ta có d  I ;  P   

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 16


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

17

Câu 34.
Lời giải
S

A

D

E

B

C

  90 .
* Do SA   ABCD   SA  AC  SAC
  90 .
* Do BC   SAB   BC  SC  SBC
  90 .
* Do CE //AB  CE   SAD   CE  SE  SEC
Suy ra các điểm A , B , E cùng nhìn đoạn SC dưới một góc vuông nên mặt cầu đi qua các điểm S , A ,
B , C , E là mặt cầu đường kính SC .
Bán kính mặt cầu đi qua các điểm S , A , B , C , E là: R 

SC
.
2

Xét tam giác SAC vuông tại A ta có: AC  AB 2  a 2  SC  AC 2  2a
SC
R
 a.
2
Câu 35.
Lời giải
Chọn D
3



1 ln  f  x  

Ta có K   e

3



1 ln  f  x  

 4 dx   e

0

3

3

3

3

dx   4dx  e. f  x  dx   4dx  4e  4 x|  4e  12 .
0

0

0

0

0

Vậy K  4e  12 .
Câu 36.
Lời giải
Ta có log

1
  log
x 2 
y

y
x

y
x

y  1 log x y  1
log x y  1 2 log x y  1


.
 .
x  2 1 log y  1 log x y  2 2 log x y  2
x
2
2

 2 log x y  1 
Suy ra P  2 log x y  1  8 
.
 2 log y  2 
x


Đặt t  2log x y , do 1  x  y  log x 1  log x x  log x





2

y t  2.

2

2
 t 1 
Ta có hàm số f  t    t  1  8. 
 với t  2 .
t 2
2  t  1 t  4   t 2  2t  4 
t  1
; f  t   0  
.
f  t  
3
t  2
t  4

Lập bảng biến thiên trên  2;  ta được
BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 17


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn


Vậy giá trị nhỏ nhất của biểu thức P   log x y  1  8  log


2
4
t  4  2log x y  4  y  x  y  x .
Câu 37.
Lời giải
2
Đặt g  x   f  x  8 x  m 

2

y
 là 27 đạt được khi
x 

2

2

18

y
x

2

f   x    x  1  x 2  2 x   g   x    2 x  8   x 2  8 x  m  1  x 2  8 x  m  x 2  8 x  m  2 
x  4
 2
 x  8 x  m  1  0 1
g  x   0   2
x  8x  m  0
 2

 x 2  8 x  m  2  0  3

2

Các phương trình 1 ,  2  ,  3 không có nghiệm chung từng đôi một và  x 2  8 x  m  1  0 với

x  
Suy ra g  x  có 5 điểm cực trị khi và chỉ khi  2  và  3 có hai nghiệm phân biệt khác 4
 2  16  m  0
m  16
  16  m  2  0
m  18

 3

 m  16 .

m  16
16  32  m  0
m  18
16  32  m  2  0
Vì m nguyên dương và m  16 nên có 15 giá trị m cần tìm.
Câu 38.
Lời giải
Số tập con gồm 2 phần tử của M là số cách chọn 2 phần tử bất kì trong 10 phần tử của M . Do đó số
tập con gồm 2 phần tử của M là C102 .
Câu 39.
Lời giải

  OCB
 1
Ta có tứ giác BOKC là tứ giác nội tiếp đường tròn suy ra OKB
BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 18


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

19

  OCB
  2
Ta có tứ giác KDHC là tứ giác nội tiếp đường tròn suy ra DKH
  OKB
 . Do đó BK là đường phân giác trong của góc OKH
 và AC là
Từ 1 và  2  suy ra DKH
.
đường phân giác ngoài của góc OKH
 và AB là đường phân giác
Tương tự ta chứng minh được OC là đường phân giác trong của góc KOH
.
ngoài của góc KOH
Ta có OK  4 ; OH  3 ; KH  5 .

 và KOH
.
Gọi I , J lần lượt là chân đường phân giác ngoài của góc OKH



IO KO 4
4
Ta có I  AC  HO ta có

  IO  IH  I  8;  8;  4  .
IH KH 5
5


JK OK 4
4 
Ta có J  AB  KH ta có

  JK  JH  J 16; 4;  4  .
JH OH 3
3
  16 28 20  4
Đường thẳng IK qua I nhận IK   ; ;    4; 7;5  làm vec tơ chỉ phương có phương trình
 3 3 3  3
 x  8  4t

 IK  :  y  8  7t .
 z  4  5t


Đường thẳng OJ qua O nhận OJ  16; 4;  4   4  4;1;  1 làm vec tơ chỉ phương có phương trình
 x  4t 

 OJ  :  y  t  .
 z  t 

Khi đó A  IK  OJ , giải hệ ta tìm được A  4; 1;1 .


 
Ta có IA   4; 7;5  và IJ   24;12; 0  , ta tính  IA, IJ    60;120; 120   60 1;  2; 2  .

Khi đó đường thẳng đi qua A và vuông góc với mặt phẳng  ABC  có véc tơ chỉ phương u  1; 2; 2 
nên có phương trình

x  4 y 1 z 1
.


1
2
2

Câu 40.
Lời giải
Chọn hệ tọa độ Oxy . Khi đó

Diện tích hình chữ nhật là S1  4 .


Diện tích phần đất được tô màu đen là S 2  2  sin xdx  4 .
0

Tính diện tích phần còn lại: S  S1  S 2  4  4  4    1 .
Câu 41.
Lời giải
Ta có: A  2; 2; 2  và PA  PB  PC 

3 21
.
4

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 19


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

20

Câu 42.
Lời giải

Gọi I là trung điểm của BC  AI  BC . Mà OA  BC nên AI  BC .
 OBC    ABC   BC

.
Ta có:  BC  AI
 
OI , AI   OIA
 OBC  ,  ABC    
 BC  OI

Ta có: OI 

1
1
BC 
OB 2  OC 2  a 3 .
2
2


Xét tam giác OAI vuông tại A có tan OIA

OA
3
  30 .

 OIA
OI
3

Vậy 
 OBC  ,  ABC    30 .
Câu 43.
Lời giải
Ta có tập xác định: D   \ 1 .
Do lim y  3 và lim y   , lim y   nên đồ thị hàm số có hai đường tiệm cận.
x 

x 1

x 1

Câu 44.
Lời giải
Do d   P  nên vec-tơ chỉ phương của đường thẳng d là vec-tơ pháp tuyến của  P  .
 
Suy ra một một vec-tơ chỉ phương của đường thẳng d là u  n P    4; 0;  1 .
Câu 45.
Lời giải
Gọi A  a ;0;0  , B  0; b ;0  và C  0;0; c  với abc  0 .
Phương trình mặt phẳng  P  đi qua ba điểm A , B , C là

x y z
  1.
a b c

1 2 3
   1.
a b c
 
 AM  BC
 AM . BC  0
Điểm M là trực tâm của ABC  
.
   
 BM  AC
 BM . AC  0




Ta có: AM  1  a ; 2;3 , BC   0;  b ; c  , BM  1; 2  b ;3 , AC    a ; 0; c  .

Vì M 1; 2;3   P  nên ta có:

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 20


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

21



3


b  c
a  14
2b  3c  0
2



 b  7 .
Ta có hệ phương trình:  a  3c  0  a  3c
 14
1 2 3
1
2 3
   1  
c 
 1
3
a b c

 3c 3 c c

2
x y 3z
Phương trình mặt phẳng  P  là
 
 1  x  2 y  3 z  14  0 .
14 7 14
Câu 46.
Lời giải
Ta có log 2  3x  1  3  3x  1  8  x  3 .
Câu 47.
Lời giải

Đặt MN  x,  x  0  và OA  a,  a  0  , a là hằng số.
MN NA
MN .OA
xa
xa
.

 NA 
 NA 
 ON  a 
SO OA
SO
h
h
Khối trụ thu được có bán kính đáy bằng ON và chiều cao bằng MN .

Ta có

2

3

 a 2  2h 
2
hx
2 1
Thể tích khối trụ là V   .ON .MN   .x.a 



a
2
x
h

x



  .
2h 2  3 
2h 2
 h 
2

2

Dấu bằng xảy ra khi 2x  h  x  x 

h
.
3

Câu 48.
Lời giải
2x

du  2
dx

u  ln  x  9 
x  9


Đặt 

x2  9

dv  xdx
v


2
2

4

4

4

x2  9
x2  9 2x
Suy ra  x ln  x  9  dx 
ln  x 2  9   
.
dx  25ln 5  9ln 3  8 .
2
2 x2  9
0
0
0
Do đó a  25 , b  9 , c  8 nên T  8 .
2

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 21


TÀI LIỆU LUYỆN THI THPT QUỐC GIA NĂM 2020 MÔN TOÁN – THẦY ĐẶNG THÀNH NAM
Fanpage: Thầy Đặng Thành Nam || Group: Học sinh Vted || Fanpage Vted: Vted.vn

22

Câu 49.
Lời giải.

1
9 3
27 3
Diện tích đáy: S ABC  .3.3.sin 60 
. Thể tích Vlt  S ABC . AA 
.
2
4
4
Câu 50.
Lời giải
2
Ta có: y  3 x  6 x  m .
Hàm số đạt cực tiểu tại x  2  y  2   0  m  0 .

Thử lại: với m  0 thì y  3x 2  6 x  y   6 x  6  y  2   6  0 suy ra hàm số đạt cực tiểu tại x  2 .

BỨT PHÁ ĐIỂM THI MÔN TOÁN CHO KÌ THI THPT QUỐC GIA 2020 VỚI COMBO X DUY NHẤT TẠI VTED 22



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×