Tải bản đầy đủ

Sở băc ninh 2019 lân 3

NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

SỞ GD&ĐT BẮC NINH

.

Họ và tên: SBD:.
Câu 1.

Trong không gian với hệ tọa độ Oxyz , phương trình mặt phẳng   đi qua điểm A  0;  1;0  ;

B  2;0;0  ; C  0;0;3 là
A.
Câu 2.

x y z
   1.
2 1 3


B.

x y z
   0.
2 1 3

C.

Tập xác định của hàm số y   x 2  3 x  2  5   x  3

là:

Cho hàm số y  f  x  có f  2   2 , f  3  5 ; hàm số y  f '  x  liên tục trên  2;3 . Khi đó
3

2

f '  x  dx bằng:

A. 3 .

B. 3 .

C. 10 .

NHÓM TOÁN VD – VDC



D. 7 .

Bất phương trình log 2  3x  2   log 2  6  5 x  có tập nghiệm là  a; b  . Tổng a  b bằng
A.

Câu 6.

2

D. D   ;1   2;   .


C. D   ;   \ 1; 2  .

Câu 5.

x y z
   1.
2 1 3

B. D   ;1   2;   \ 3 .

A. D   ;   \ 3 .

Câu 4.

D.

Gọi z1 , z2 là hai nghiệm phức của phương trình 2 z 2  3z  3  0 . Giá trị của biểu thức z12  z22
bằng
3
9
9
A.
.
B.  .
C. 3 .
D.  .
18
4
8
3

Câu 3.

x y z
  1.
1 2 3

8
.
3

B.

28
.
15

C.

26
.
5

D.

11
.
5

Cho hàm số y  f  x  có bảng biến thiên như sau:

Tập tất cả các giá trị của tham số m để phương trình f  x   m có ba nghiệm phân biệt là
A.  4;   .
Câu 7.

C.  2; 4 .

B.  ; 2  .

Số đường tiệm cận của đồ thị hàm số y 
A. 2 .

Câu 8.

NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPT QG NĂM 2019
MÔN: TOÁN
Thời gian làm bài: 90 phút
(không kể thời gian giao đề)
Mã Đề: 101
(Đề gồm 06 trang)

B. 4 .

x

x 9
C. 3 .

D.  2;4  .

2

D. 1 .

Hàm số y  x3  3x 2  4 nghịch biến trên khoảng nào sau đây?

https://www.facebook.com/groups/toanvd.vdc

Trang 1


NHÓM TOÁN VD – VDC

A.
Câu 9.

.

ĐỀ THI THỬ THPTQG – 2018-2019

B.  ; 2  .

C.  0;   .

D.  2;0  .

Trong không gian với hệ trục tọa độ Oxyz , cho hai vectơ a   4;5; 3 , b   2; 2;1 . Tìm tọa
C. x   0; 1;1 .

D. x   8;9;1 .

Câu 10. Họ nguyên hàm của hàm số f  x   cos 2 x là:

sin 2 x
C .
2
sin 2 x
C .
C.  cos 2 xdx  
2
A.  cos 2 xdx 

B.  cos 2 xdx  sin 2 x  C .
D.  cos 2 xdx  2sin 2 x  C .

Câu 11. Cho hàm số y  a x với 0  a  1 . Mệnh đề nào sau đây sai?

NHÓM TOÁN VD – VDC

độ của vectơ x  a  2b .
A. x   2;3; 2  .
B. x   0;1; 1 .

A. Đồ thị hàm số y  a x và đồ thị hàm số y  log a x đối xứng nhau qua đường thẳng y  x. .
B. Hàm số y  a x có tập xác định là

và tập giá trị là (0; ) .

C. Hàm số y  a x đồng biến trên tập xác định của nó khi a  1 .
D. Đồ thị hàm số y  a x có tiệm cận đứng là trục tung.
Câu 12. Đường cong trong hình vẽ bên là đồ thị của một trong bốn hàm số được liệt kê ở bốn phương án
dưới đây. Hỏi đó là hàm số nào?
y
-1

O

x

1

-4

A. y  x 4  2 x 2 .

B. y   x 4  3x 2  3 .

C. y  x 4  x 2  3 .

D. y  x 4  2 x 2  3 .

3a
. Biết rằng hình
2
chiếu vuông góc của A lên  ABC  là trung điểm BC . Thể tích của khối lăng trụ ABC.ABC

Câu 13. Cho hình lăng trụ ABC.ABC có đáy ABC là tam giác đều cạnh a , AA 


A.

a3 2
.
8

B.

3a 3 2
.
8

C.

a3 6
.
2

D.

2a 3
.
3

Câu 14. Trong không gian với hệ tọa độ Oxyz , phương trình đường thẳng d đi qua điểm A 1; 2;1 và
vuông góc với mặt phẳng  P  : x  2 y  z  1  0 có dạng

x 1 y  2 z 1


.
1
2
1
x 1 y  2 z 1


C. d :
.
1
2
1
A. d :

https://www.facebook.com/groups/toanvd.vdc

x2 y z2


.
1
2
1
x2 y z2


D. d :
.
2
4
2
B. d :

Trang 2

NHÓM TOÁN VD – VDC

-3


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019
x3 1

2
1
Câu 15. Trong các hàm số f  x   log 2 x ; g  x      ; h  x   x 3 ; k  x   3x có bao nhiêu hàm số
2
đồng biến trên ?
A. 2 .
B. 3 .
C. 4 .
D. 1 .

1

nghiệm là
A. 0 .

D. 1 .

C. 2 .

B. 3 .

Câu 17. Một hình nón có độ dài đường sinh bằng đường kính đáy. Diện tích hình tròn đáy của hình nón
bằng 9 . Tính đường cao h của hình nón.
A. h 

3
.
2

B. h  3 3 .

C. h 

3
.
3

D. h  3 .

NHÓM TOÁN VD – VDC

Câu 16. Số giá trị nguyên của tham số m để phương trình để phương trình sin x   m  1 cos x  2m  1 có

Câu 18. Trong không gian, cho các mệnh đề sau:
I . Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau.
II . Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song
song với hai đường thẳng đó.
III . Nếu đường thẳng a song song với đường thẳng b , đường thẳng b nằm trên mặt phẳng
 P  thì a song song với  P  .
IV . Qua điểm A không thuộc mặt phẳng   , kẻ được đúng một đường thẳng song song với

  .
Số mệnh đề đúng là
A. 2 .

C. 1 .

B. 0 .

D. 3 .

Câu 19. Tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện | z  1  2i | 1 là
B. Đường tròn I  1;  2  , bán kính R  1 .

C. Đường tròn I  1; 2  , bán kính R  1 .

D. Đường tròn I 1;  2  , bán kính R  1 .

Câu 20. Kí hiệu Cnk là số các tổ hợp chập k của n phần tử (1  k  n) . Mệnh đề nào sau đây đúng?
A. Cnk 

n!
.
k !(n  k )!

B. Cnk 

k!
.
k !(n  k )!

C. Cnk 

k!
.
k !(n  k )!

D. Cnk 

n!
.
(n  k )!

Câu 21. Cho hàm số y  f  x  liên tục, đồng biến trên đoạn  a; b. Khẳng định nào sau đây đúng?
A. Hàm số đã cho có cực trị trên đoạn  a; b. .
B. Hàm số đã cho có giá trị lớn nhất, giá trị nhỏ nhất trên khoảng  a; b  . .
C. Phương trình f  x   0 có nghiệm duy nhất thuộc đoạn  a; b. .
D. Hàm số đã cho có giá trị lớn nhất, giá trị nhỏ nhất trên đoạn  a; b. .
Câu 22. Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M , N là trung điểm của SA , SB . Mặt
phẳng  MNCD  chia hình chóp đã cho thành hai phần. Tỉ số thể tích hai phần là (số bé chia số
lớn)
3
A. .
5

B.

3
.
4

https://www.facebook.com/groups/toanvd.vdc

C.

1
.
3

D.

4
.
5

Trang 3

NHÓM TOÁN VD – VDC

A. Đường tròn I 1; 2  , bán kính R  1 .


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

Câu 23. Trong không gian với hệ tọa độ Oxyz , mặt cầu  S  có tâm I  3; 3;1 và đi qua điểm A  5; 2;1
có phương trình là
A.  x  5   y  2   z  1  5 .

B.  x  3   y  3   z  1  25 .

C.  x  3   y  3   z  1  5 .

D.  x  3   y  3   z  1  5 .

2

2

2

2

2

2

2

2

2

Câu 24. Cho lăng trụ tam giác đều ABC.ABC có độ dài cạnh đáy bằng a , góc giữa đường thẳng AB
và mặt phẳng  ABC  bằng 60º . Tính thể tích V của khối trụ ngoại tiếp lăng trụ đã cho.
A. V  a3 3 .

B. V 

4a 3 3
.
3

Câu 25. Cho hàm số y  f  x  liên tục trên

C. V 

a 3 3
.
9

D. V 

a 3 3
.
3

, có đạo hàm f ( x)  x3  x 1  x  2  . Hỏi hàm số
2

y  f  x  có bao nhiêu điểm cực trị?
A. 2 .

NHÓM TOÁN VD – VDC

2

2

2

C. 1 .

B. 0 .

D. 3 .
2
1 
Câu 26. Tích giá trị lớn nhất và giá trị nhỏ nhất của hàm số y  x 2  trên đoạn  ; 2  bằng
x
2 
51
85
A. 15 .
B. 8 .
C.
.
D.
.
4
4
Câu 27. Cho hình chóp S.ABC có đáy là tam giác vuông tại A , biết SA   ABC  và AB  2a, AC  3a,
SA  4a . Tính khoảng cách d từ điểm A đến mặt phẳng  SBC  .

A. d 

2a
.
11

B. d 

6a 29
.
29

C. d 

12a 61
.
61

D. d 

a 43
.
12

Câu 28. Cho hàm số y  f  x  , y  g  x  liên tục trên đoạn  a; b  a  b  . Hình phẳng D giới hạn bởi đồ
A. S D   f  x   g  x  dx .

B. S D    f  x   g  x  dx .
a

C. S D    f  x   g  x  dx .

D. S D   f  x   g  x  dx .

b

b

a

a

b

b

a

Câu 29. Số phức z  5  8i có phần ảo là.
A. 5 .
B. 8 .
Câu 30. Biểu thức
1

A. x 12 .

3

NHÓM TOÁN VD – VDC

thị hai hàm số y  f  x  , y  g  x  và hai đường thẳng x  a, x  b có diện tích là

C. 8 .

D. 8i .

x 4 x  x  0  viết dưới dạng lũy thừa với số mũ hữu tỉ là:
1

B. x 7 .

5

C. x 4 .

5

D. x 12 .

Câu 31. Cho hàm số y  f  x  là hàm đa thức bậc 4, có đồ thị hàm số y  f '  x  như hình vẽ. Hàm số

y  f  5  2 x   4 x 2  10 x đồng biến trong các khoảng nào sau đây?

https://www.facebook.com/groups/toanvd.vdc

Trang 4


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019
y
5

NHÓM TOÁN VD – VDC

3

1
O

A.  3; 4  .
Câu 32. Cho hàm số

1

3 
C.  ; 2  .
2 

 5
B.  2;  .
 2

y  f  x

x

2

\ 1;0

liên tục trên

x  x  1 f   x    x  2  f  x   x  x  1 , x 
số hữu tỉ. Tính T  a 2  b .
21
3
A. T   .
B. T  .
16
16

 3
D.  0;  .
 2

thỏa mãn

f 1  2ln 2  1



\ 1;0 . Biết f  2   a  b ln 3 , với a, b là hai
C. T 

3
.
2

D. T  0 .

Câu 33. Cho hàm số bậc ba y  f  x  có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m
f
thuộc đoạn  0;9 sao cho bất phương trình 2

2

 x  f  x  m

 16.2

f 2  x  f  x  m

4

f  x

 16  0 có nghiệm

x   1;1 ?
y
2

NHÓM TOÁN VD – VDC

2
-2

-1

O

1

x

-2
y = f(x)

A. 6 .

B. 8 .

C. 5 .

D. 7 .

3
5
Câu 34. Cho a, b, c, d là các số nguyên dương, a  1; c  1 thoa mãn log a b  ;log c d  và a  c  9 .
2
4
Khi đó b  d bằng
A. 93 .

B. 9 .

C. 13 .

D. 21 .

Câu 35. Cho hàm số y  x3  8 x 2  8 x có đồ thị  C  và hàm số y  x 2  8  a  x  b (với a, b 

) có

đồ thị  P  . Biết đồ thị hàm số  C  cắt  P  tại các điểm có hoành độ nằm trong đoạn  1;5 .
Khi a đạt giá trị nhỏ nhất thì tích ab bằng
A. 729 .
B. 375 .
C. 225 .
D. 384 .
Câu 36. Gọi A là tập các số tự nhiên có 3 chữ số đôi một khác nhau. Lấy ngẫu nhiên từ A ra hai số.
Tính xác suất để lấy được hai số mà các chữ số có mặt ở hai số đó giống nhau.
https://www.facebook.com/groups/toanvd.vdc

Trang 5


NHÓM TOÁN VD – VDC

A.

ĐỀ THI THỬ THPTQG – 2018-2019

41
.
5823

B.

35
.
5823

C.

D.

14
.
1941

 x
và f  2   16,  f  x dx  4 . Tính I   xf   dx .
2
0
0
2

4

C. I  112 .

B. I  12 .

D. I  28 .

Câu 38. Cho tứ diện ABCD có DAB  CBD  90º ; AB  a; AC  a 5; ABC  135 . Biết góc giữa hai
mặt phẳng  ABD  ,  BCD  bằng 30 . Thể tích của tứ diện ABCD là

a3
.
2

C.

a3
.
3 2

Câu 39. Trong mặt phẳng với hệ tọa độ Oxy , cho hình

 H1 

A.

a3
.
2 3

B.

y   2x , x  4 ; hình

 H2 

D.

a3
.
6

giới hạn bởi các đường y  2 x ,

NHÓM TOÁN VD – VDC

Câu 37. Cho hàm số y  f  x  liên tục trên
A. I  144 .

41
.
7190

là tập hợp tất cả các điểm M  x; y  thỏa mãn các điều kiện:

x 2  y 2  16;  x  2  y 2  4;  x  2   y 2  4 . Khi quay  H1  ,  H 2  quanh Ox ta được các
2

2

khối tròn xoay có thể tích lần lượt là V1 , V2 . Khi đó, mệnh đề nào sau đây là đúng?
A. V2  2V1 .

B. V2  V1 .

C. V1  V2  48 .

D. V2  4V1 .

Câu 40. Trong không gian với hệ tọa độ Oxyz , cho hai điểm A 1; 2;1 , B  3; 4;0  , mặt phẳng

 P  : ax  by  cz  46  0 . Biết rằng khoảng cách từ
và 3 . Giá trị của biểu thức T  a  b  c bằng
A. 3 .
B. 6 .

A, B đến mặt phẳng  P  lần lượt bằng 6

C. 3 .

D. 6 .

Câu 41. Cho hình chóp S.ABC có SA vuông góc với  ABC  , AB  a, AC  a 2, BAC  45º . Gọi B1 , C1
A.BCC1 B1 bằng

A.

 a3
.
2

B.  a3 2 .

C.

4 3
a .
3

Câu 42. Cho các số phức z , w khác 0 thỏa mãn z  w  0 và

1
.
3

D.

 a3 2
3

.

1 3
6
z
 
. Khi đó
bằng
z w zw
w

1
.
3
Câu 43. Ông Nam dự định gửi vào ngân hàng một số tiền với lãi suất 6, 6% /năm. Biết rằng nếu không
rút tiền khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho năm tiếp theo. Tính số tiền tối thiểu x triệu đồng  x   ông Nam gửi vào ngân hàng để

A. 3 .

B.

C.

3.

D.

sau 3 năm số tiền lãi đủ mua một chiếc xe gắn máy trị giá 26 triệu đồng.
A. 191triệu đồng.
B. 123 triệu đồng.
C. 124 triệu đồng.
D. 145 triệu đồng.

x 1 y 1 z  2


và mặt phẳng
1
2
1
 P  :2 x  y  2 z  1  0 . Gọi d  là hình chiếu của đường thẳng d lên mặt phẳng  P  , vectơ chỉ

Câu 44. Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d :

phương của đường thẳng d  là
A. u3  5;  16;  13 .
B. u2  5;  4;  3 .
https://www.facebook.com/groups/toanvd.vdc

C. u4  5;16;13 .

D. u1  5;16;  13 .
Trang 6

NHÓM TOÁN VD – VDC

lần lượt là hình chiếu vuông góc của A lên SB, SC . Thể tích khối cầu ngoại tiếp hình chóp


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

Câu 45. Trong không gian với hệ tọa độ Oxyz , cho điểm A  4;0;0  , B  0; 4;0  , S  0;0; c  và đường thẳng

x 1 y 1 z 1


. Gọi A, B  lần lượt là hình chiếu vuông góc của O lên SA, SB . Khi góc
1
1
2
giữa đường thẳng d và mặt phẳng  OAB  lớn nhất, mệnh đề nào sau đây đúng?
d:

 17 15 
D. c    ;   .
2
 2

C. c   0;3 .

Câu 46. Cho hàm số y  f  x  có đồ thị như hình vẽ. Biết tất cả các điểm cực trị của hàm số y  f  x 
là 2, 0, 2, a, 6 với 4  a  6 . Số điểm cực trị của hàm số y  f  x6  3x 2  là
y

-2

a

2

O

6

NHÓM TOÁN VD – VDC

B. c   9; 8  .

A. c   8; 6  .

x

y = f(x)

B. 11 .

A. 8 .

C. 9 .

D. 7 .

Câu 47. Cho hai số thực x, y thỏa mãn:
log

3

y

2

 8 y  16   log 2  5  x 1  x    2log3

5  4 x  x2
2
 log 2  2 y  8  .
3

x2  y 2  m

không vượt quá 10 . Hỏi S có bao nhiêu tập con không phải là tập rỗng?
A. 2047 .
B. 16383 .
C. 16384 .
D. 32 .
1

Câu 48. Cho tích phân I    x  2  ln  x  1 dx  a ln 2 
0

a  b bằng
A. 8 .

7
trong đó a , b là các số nguyên dương. Tổng
b

2

C. 12 .

B. 16 .

D. 20 .

Câu 49. Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng  P  : mx   m  1 y  z  2m  1  0 , với m
là tham số. Gọi    là tập hợp các điểm H m là hình chiếu vuông góc của điểm H  3;3;0  trên  P 
. Gọi a, b lần lượt là khoảng cách lớn nhất, khoảng cách nhỏ nhất từ O đến một điểm thuộc    .
Khi đó, a  b bằng
A. 5 2 .
Câu 50. Cho số phức z

C. 8 2 .

B. 3 3 .

1  i  z  1  3i

thỏa mãn

D. 4 2 .

 3 2 . Giá trị lớn nhất của biểu thức

P  z  2  i  6 z  2  3i bằng

A. 5 6 .





B. 15 1  6 .

https://www.facebook.com/groups/toanvd.vdc

C. 6 5 .

D. 10  3 15 .

Trang 7

NHÓM TOÁN VD – VDC

Gọi S là tập các giá trị nguyên của tham số m để giá trị lớn nhất của biểu thức P 


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

BẢNG ĐÁP ÁN
2.D
12.D
22.A
32.A
42.D

3.B
13.B
23.D
33.A
43.C

4.A
14.D
24.D
34.A
44.D

5.D
15.D
25.A
35.B
45.D

6.D
16.C
26.A
36.A
46.B

7.D
17.B
27.C
37.C
47.B

8.D
18.B
28.A
38.D
48.D

9.B
19.C
29.B
39.D
49.D

10.A
20.A
30.D
40.B
50.C

LỜI GIẢI CHI TIẾT
Câu 1.

Trong không gian với hệ tọa độ Oxyz , phương trình mặt phẳng   đi qua điểm A  0;  1;0  ;

B  2;0;0  ; C  0;0;3 là
A.

x y z
   1.
2 1 3

B.

x y z
   0.
2 1 3

x y z
  1.
1 2 3

C.

D.

NHÓM TOÁN VD – VDC

1.D
11.D
21.D
31.B
41.D

x y z
   1.
2 1 3

Lời giải
Chọn D
Câu 2.

Gọi z1 , z2 là hai nghiệm phức của phương trình 2 z 2  3z  3  0 . Giá trị của biểu thức z12  z22
bằng
3
9
9
A.
.
B.  .
C. 3 .
D.  .
18
4
8
Lời giải
Chọn D

.

2

Mà z  z2   z1  z2 
2
1

Câu 3.

2

2


3
3
9
 2 z1 z2   
  2.   .
2
4
 2 
3
5

Tập xác định của hàm số y   x  3 x  2    x  3
2

2

là:

A. D   ;   \ 3 .

B. D   ;1   2;   \ 3 .

C. D   ;   \ 1; 2  .

D. D   ;1   2;   .
Lời giải

Chọn B
 x  1
 x 2  3x  2  0

Ta có hàm số xác định khi 
   x  2
x  3  0
x  3


Suy ra tập xác định D   ;1   2;   \ 3

https://www.facebook.com/groups/toanvd.vdc

Trang 8

NHÓM TOÁN VD – VDC


3
 z1  z2  
2
Vì z1 , z2 là hai nghiệm của phương trình 2 z 2  3z  3  0 nên theo viet ta có 
z z  3
 1 2 2


NHÓM TOÁN VD – VDC

Câu 4.

ĐỀ THI THỬ THPTQG – 2018-2019

Cho hàm số y  f  x  có f  2   2 , f  3  5 ; hàm số y  f   x  liên tục trên  2;3 . Khi đó

 f   x  dx
3

2

bằng:
C. 10 .
Lời giải

D. 7 .

NHÓM TOÁN VD – VDC

B. 3 .

A. 3 .
Chọn A
Ta có
Câu 5.



3

2

f '( x)dx  f ( x) 2  f (3)  f (2)  5  2  3
3

Bất phương trình log 2  3x  2   log 2  6  5 x  có tập nghiệm là  a; b  . Tổng a  b bằng
A.

8
.
3

B.

28
.
15

C.

26
.
5

D.

11
.
5

Lời giải
Chọn D
6

6  5 x  0
6
x 
Bất phương trình đã cho tương đương với: 

5 1 x  .
5
3x  2  6  5 x

x  1
a  1
11

 6
Vậy bất phương trình có tập nghiệm S  1;  , suy ra:  6  a  b  .
5
b
 5

 5

Câu 6.

Cho hàm số y  f  x  có bảng biến thiên như sau:

A.  4;   .

C.  2; 4 .

B.  ; 2  .

D.  2;4  .

Lời giải
Chọn D
Số nghiệm của phương trình f  x   m bằng số giao điểm của đồ thị hàm số y  f  x  với
đường thẳng y  m .

Từ bảng biến thiên suy ra phương trình có ba nghiệm phân biệt khi 2  m  4 .
Câu 7.

Số đường tiệm cận của đồ thị hàm số y 

https://www.facebook.com/groups/toanvd.vdc

x

x 9
2

Trang 9

NHÓM TOÁN VD – VDC

Tập tất cả các giá trị của tham số m để phương trình f  x   m có ba nghiệm phân biệt là


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

B. 4 .

A. 2 .

C. 3 .

D. 1 .

Lời giải

NHÓM TOÁN VD – VDC

Chọn D
Tập xác định của hàm số D 
1
x
x
Có: lim 2
.
 lim x  0  lim 2
x  x  9
x 
x  x  9
9
1 2
x

Đồ thị hàm số có đường tiệm cận ngang y  0
Câu 8.

Hàm số y  x3  3x 2  4 nghịch biến trên khoảng nào sau đây?
A.

B.  ; 2  .

.

C.  0;   .

D.  2;0  .

Lời giải
Chọn D
Tập xác định của hàm số D 
x  0
Có: y '  3 x 2  6 x ; y '  0  
 x  2

Dấu của y ' : y '  0  x   ; 2    0;   ; y '  0  x   2;0 
Câu 9.

Trong không gian với hệ trục tọa độ Oxyz , cho hai vectơ a   4;5; 3 , b   2; 2;1 . Tìm tọa
C. x   0; 1;1 .

D. x   8;9;1 .

Lời giải
Chọn B

 a   4;5; 3
 x  a  2.b   0;1; 1 .
 
2.
b

4;

4;
2




 Vậy x   0;1; 1 .
Câu 10. Họ nguyên hàm của hàm số f  x   cos 2 x là:

sin 2 x
C .
2
sin 2 x
C .
C.  cos 2 xdx  
2
A.  cos 2 xdx 

B.  cos 2 xdx  sin 2 x  C .
D.  cos 2 xdx  2sin 2 x  C .
Lời giải

Chọn A
Cách 1
 Vì  sin 2 x  C   2.cos 2 x  f  x  nên B sai.
/

/

1
 sin 2 x

 Vì  
 C    .2.cos 2 x   cos 2 x  f  x  nên C sai.
2
2


https://www.facebook.com/groups/toanvd.vdc

Trang 10

NHÓM TOÁN VD – VDC

độ của vectơ x  a  2b .
A. x   2;3; 2  .
B. x   0;1; 1 .


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

 Vì  2.sin 2 x  C   2.2.cos 2 x  4.cos 2 x  f  x  nên D sai.
/

/

 sin 2 x
 1
 Vì 
 C   .2.cos 2 x  cos 2 x  f  x 
 2
 2

NHÓM TOÁN VD – VDC

nên họ nguyên hàm của hàm số f  x   cos 2 x là  cos 2 xdx 

sin 2 x
C .
2

Cách 2

1
1
  cos 2 xdx  . cos 2 x.d  2 x   .sin 2 x  C .
2
2
 Vậy họ nguyên hàm của hàm số f  x   cos 2 x là  cos 2 xdx 

sin 2 x
C .
2

Câu 11. Cho hàm số y  a x với 0  a  1 . Mệnh đề nào sau đây sai?
A. Đồ thị hàm số y  a x và đồ thị hàm số y  log a x đối xứng nhau qua đường thẳng y  x.
B. Hàm số y  a x có tập xác định là

và tập giá trị là (0; ) .

C. Hàm số y  a x đồng biến trên tập xác định của nó khi a  1 .
D. Đồ thị hàm số y  a x có tiệm cận đứng là trục tung.
Lời giải
Chọn D
+ Hàm số y  a x có tập xác định là

và tập giá trị là (0; ) .

+ Hàm số y  a x đồng biến trên tập xác định của nó khi a  1 và nghịch biến trên tập xác định
của nó khi 0  a  1.
+ Đồ thị hàm số y  a x có tiệm cận ngang là trục hoành và không có tiệm cận đứng.
Câu 12. Đường cong trong hình vẽ bên là đồ thị của một trong bốn hàm số được liệt kê ở bốn phương án
dưới đây. Hỏi đó là hàm số nào?
y
-1

O

x

1

-3
-4

A. y  x 4  2 x 2 .

B. y   x 4  3x 2  3 .

C. y  x 4  x 2  3 .

D. y  x 4  2 x 2  3 .

Lời giải
Chọn D
+ Ta có: lim y   , suy ra loại B.
x 

+ Từ hình vẽ bên ta thấy đồ thị hàm số đạt cực đại tại (0; 3) suy ra loại A.
+ Đồ thị hàm số đạt cực tiểu tại (  1; 4) suy ra loại C.

https://www.facebook.com/groups/toanvd.vdc

Trang 11

NHÓM TOÁN VD – VDC

+ Đồ thị hàm số y  a x và đồ thị hàm số y  log a x đối xứng nhau qua đường thẳng y  x.


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

3a
. Biết rằng hình
2
chiếu vuông góc của A lên  ABC  là trung điểm BC . Thể tích của khối lăng trụ ABC.ABC

Câu 13. Cho hình lăng trụ ABC.ABC có đáy ABC là tam giác đều cạnh a , AA 

A.

a3 2
.
8

B.

3a 3 2
.
8

C.

a3 6
.
2

D.

NHÓM TOÁN VD – VDC


2a 3
.
3

Lời giải
Chọn B

Gọi M là trung điểm của BC , khi đó AM  BC , AM 

a 3
và A ' M   ABC  .
2

Trong tam giác vuông A ' AM có: A ' M  AA'2  AM 2 
Vậy, thể tích khối lăng trụ là: V  A ' M .S

ABC



a 6
2

a 6 a 2 3 3a 3 2
.

.
2
4
8

vuông góc với mặt phẳng  P  : x  2 y  z  1  0 có dạng

x 1 y  2 z 1


.
1
2
1
x 1 y  2 z 1


.
C. d :
1
2
1
A. d :

x2 y


1
2
x2 y


D. d :
2
4
Lời giải
B. d :

z2
.
1
z2
.
2

Chọn D
Do đường thẳng d vuông góc với mặt phẳng  P  nên d nhận của véc tơ pháp tuyến của  P 
là n  1; 2;1 làm véc tơ chỉ phương. Vì thế loại đáp án C.
Trong các đáp án A, B, D chỉ có đáp án D là đường thẳng d đi qua điểm A 1; 2;1 .
Vậy chọn D.

1
Câu 15. Trong các hàm số f  x   log 2 x ; g  x     
2
đồng biến trên ?
https://www.facebook.com/groups/toanvd.vdc

x3 1

1

; h  x   x 3 ; k  x   3x có bao nhiêu hàm số
2

Trang 12

NHÓM TOÁN VD – VDC

Câu 14. Trong không gian với hệ tọa độ Oxyz , phương trình đường thẳng d đi qua điểm A 1; 2;1 và


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

A. 2 .

D. 1 .

C. 4 .
Lời giải

B. 3 .

Chọn D

NHÓM TOÁN VD – VDC

Ta có:
+ f  x   log 2 x  f   x  

1
+ g  x    
2

x3 1

1
 0, x  0 .
x ln 2

1
 g   x   3x  
2

x3 1

2

ln

1
 0, x 
2

.

1
1 2
+ h  x   x 3  h  x   x 3  0, x  0 .
3

+ k  x   3x  k   x   2 x3x ln 3  0, x  0 .
2

2

1
Vậy có một hàm số g  x     
2

x3 1

đồng biến trên

.

Câu 16. Số giá trị nguyên của tham số m để phương trình để phương trình sin x   m  1 cos x  2m  1 có
nghiệm là
A. 0 .

D. 1 .

C. 2 .
Lời giải

B. 3 .

Chọn C

1   m  1   2m  1  3m 2  2m  1  0 
2

2

1
 m  1 . Vậy m  0;1 .
3

Câu 17. Một hình nón có độ dài đường sinh bằng đường kính đáy. Diện tích hình tròn đáy của hình nón
bằng 9 . Tính đường cao h của hình nón.
A. h 

3
.
2

B. h  3 3 .

C. h 

3
.
3

D. h  3 .

Lời giải
Chọn B
Ta có diện tích đáy S   r 2  9  r  3. Do đó l  2r  6.
Mặt khác ta có l 2  h2  r 2  h2  l 2  r 2  62  32  27  h  3 3.
Câu 18. Trong không gian, cho các mệnh đề sau:
I . Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau.
II . Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song
song với hai đường thẳng đó.
III . Nếu đường thẳng a song song với đường thẳng b , đường thẳng b nằm trên mặt phẳng

 P

thì a song song với  P  .

https://www.facebook.com/groups/toanvd.vdc

Trang 13

NHÓM TOÁN VD – VDC

Phương trình sin x   m  1 cos x  2m  1 có nghiệm khi và chỉ khi


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

IV . Qua điểm A không thuộc mặt phẳng   , kẻ được đúng một đường thẳng song song với

  .
C. 1 .
Lời giải

B. 0 .

NHÓM TOÁN VD – VDC

Số mệnh đề đúng là
A. 2 .

D. 3 .

Chọn B
I. Sai vì hai đường thẳng đó có thể chéo nhau.
II. Sai vì hai giao tuyến có thể trùng nhau.
III. Sai vì hai đường thẳng đó có thể cùng nằm trên mp P .
IV. Sai vì có thể kẻ được vô số đường thẳng song song mp P .
Câu 19. Tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện | z  1  2i | 1 là
A. Đường tròn I 1; 2  , bán kính R  1 .

B. Đường tròn I  1;  2  , bán kính R  1 .

C. Đường tròn I  1; 2  , bán kính R  1 .

D. Đường tròn I 1;  2  , bán kính R  1 .
Lời giải

Chọn C
Giả sử z  x  yi,  x, y 

 . Ta có:

| z  1  2i | 1 |  x  1   2  y  i | 1   x  1   y  2   1 .
2

2

Vậy tập hợp điểm biểu diễn số phức z là đường tròn tâm I  1; 2  , bán kính R  1 .
Câu 20. Kí hiệu Cnk là số các tổ hợp chập k của n phần tử (1  k  n) . Mệnh đề nào sau đây đúng?
n!
.
k !(n  k )!

B. Cnk 

k!
k!
.
C. Cnk 
.
k !(n  k )!
k !(n  k )!
Lời giải

D. Cnk 

n!
.
(n  k )!

Chọn A
Công thức: Cnk 

n!
.
k !(n  k )!

Câu 21. Cho hàm số y  f  x  liên tục, đồng biến trên đoạn  a; b. Khẳng định nào sau đây đúng?
A. Hàm số đã cho có cực trị trên đoạn  a; b.
B. Hàm số đã cho có giá trị lớn nhất, giá trị nhỏ nhất trên khoảng  a; b  .
C. Phương trình f  x   0 có nghiệm duy nhất thuộc đoạn  a; b.
D. Hàm số đã cho có giá trị lớn nhất, giá trị nhỏ nhất trên đoạn  a; b.
Lời giải
Chọn D
Hàm số y  f  x  liên tục, đồng biến trên đoạn  a; b ta có bảng biến thiên trên đoạn  a; b
như sau:

https://www.facebook.com/groups/toanvd.vdc

Trang 14

NHÓM TOÁN VD – VDC

A. Cnk 


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

NHÓM TOÁN VD – VDC

Dựa vào bảng biến thiên ta có:
Hàm số đã cho có giá trị lớn nhất, giá trị nhỏ nhất trên đoạn  a; b là:
max f ( x)  f (b); min f ( x)  f ( a) .
 a ;b 

 a ;b 

Trên  a; b hàm số không có cực trị.
Trên khoảng  a; b  không thể kết luận được giá trị lớn nhất và giá trị nhỏ nhất.
Trên  a; b chưa thể kết luận được phương trình f  x   0 có nghiệm duy nhất thuộc đoạn

 a; b vì không xác định được dấu của

f ( a ) và f (b) .

Câu 22. Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M , N là trung điểm của SA , SB . Mặt
phẳng  MNCD  chia hình chóp đã cho thành hai phần. Tỉ số thể tích hai phần là (số bé chia số
lớn)
3
A. .
5

B.

3
.
4

C.

1
.
3

D.

4
.
5

Lời giải

NHÓM TOÁN VD – VDC

Chọn A
S

M

N
A
D

B
C

Gọi V là thể tích khối chóp S.ABCD .
Ta có: VS . ABCD  2.VS . ABC  2.VS . ACD  V (do các hình chóp này có cùng đường cao là khoảng
cách từ S đên (ABCD) và S ABCD  2.SABC  2.SACD )

M , N là trung điểm của SA , SB suy ra

SM 1 SN 1
 ;
 .
SA 2 SB 2

Ta lại có:

https://www.facebook.com/groups/toanvd.vdc

Trang 15


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

VS .MNCD VS .MNC  VS .MCD VS .MNC VS .MCD
V
V



 S .MNC  S .MCD
VS . ABCD
VS . ABCD
VS . ABCD VS . ABCD 2VS . ABC 2VS . ACD
SM .SN .SC SM .SC .SD 1 1 1 1 1 3

 . .  .  .
2 SA.SB.SC 2 SA.SC.SD 2 2 2 2 2 8
3
3
3
5
 VS .MNCD  .VS . ABCD  .V  VABCDMN  V  VS .MNCD  V  .V  .V .
8
8
8
8
3
.V
VS .MNCD 8
3


 .
5
VABCDMN
.V 5
8


NHÓM TOÁN VD – VDC

Câu 23. Trong không gian với hệ tọa độ Oxyz , mặt cầu  S  có tâm I  3; 3;1 và đi qua điểm A  5; 2;1
có phương trình là
A.  x  5   y  2   z  1  5 .

B.  x  3   y  3   z  1  25 .

C.  x  3   y  3   z  1  5 .

D.  x  3   y  3   z  1  5 .

2

2

2

2

2

2

2

2

2

2

2

2

Lời giải
Chọn D
Gọi R là bán kính của mặt cầu  S  . Do mặt cầu  S  có tâm là I  3; 3;1 và đi qua A nên

R  IA hay R 

 5  3   2  3  1  1
2

2

2

 5.

Do đó phương trình mặt cầu  S  là  x  3   y  3   z  1  5 .
2

2

2

A. V  a3 3 .

B. V 

4a 3 3
.
3

C. V 

a 3 3
.
9

D. V 

a 3 3
.
3

Lời giải
Chọn D

Ta có BB   ABC  nên AB là hình chiếu vuông góc của AB . Do đó  AB,  ABC  

  AB, AB   BAB  60 o .
Xét tam giác vuông BAB có BB  a tan 600  a 3 .

https://www.facebook.com/groups/toanvd.vdc

Trang 16

NHÓM TOÁN VD – VDC

Câu 24. Cho lăng trụ tam giác đều ABC.ABC có độ dài cạnh đáy bằng a , góc giữa đường thẳng AB
và mặt phẳng  ABC  bằng 60º . Tính thể tích V của khối trụ ngoại tiếp lăng trụ đã cho.


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

Gọi O, O lần lượt là tâm của đường tròn ngoại tiếp tam giác ABC , ABC nên OO   ABC 
và OO  BB  a 3 là đường cao của khối trụ ngoại tiếp hình lăng trụ.

Do đáy là tam giác đều cạnh a nên bán kính đường tròn đáy là

2
a 3
2 a 3
R  . AM = .

.
3
3 2
3
2

a 3
 a3 3
Khi đó thể tích của khối cầu ngoại tiếp hình lăng trụ là V   R h   . 
.
 3  .a 3  3


2

Câu 25. Cho hàm số y  f  x  liên tục trên

NHÓM TOÁN VD – VDC

Do tam giác ABC và ABC đều nên O, O là trọng tâm tam giác ABC , ABC .

, có đạo hàm f ( x)  x3  x 1  x  2  . Hỏi hàm số
2

y  f  x  có bao nhiêu điểm cực trị?
A. 2 .

C. 1 .
Lời giải

B. 0 .

D. 3 .

Chọn A
x  0
Ta có: f ( x)  0  x  x 1  x  2   0  x  1 .

 x  2
3

2

Qua nghiệm x  1 (nghiệm bội chẵn) f   x  không đổi dấu  hàm số có 2 cực trị.
Câu 26. Tích giá trị lớn nhất và giá trị nhỏ nhất của hàm số y  x 2 

51
.
4
Lời giải

B. 8 .

C.

NHÓM TOÁN VD – VDC

A. 15 .

2
1 
trên đoạn  ; 2  bằng
x
2 
85
D.
.
4

Chọn A
Ta có:
+) y  x 2 

2
1 
xác định x   ; 2  .
x
2 

2 2 x3  2
1 
+) y  2 x  2 
; y  0  x  1  ; 2  .
2
x
x
2 
 1  17
+) f 1  3  f     f  2   5.
2 4
Suy ra M  Max y  5 ; m  Min y  3. Vậy M .m  15.
1 
 2 ;2
 

1 
 2 ;2



Câu 27. Cho hình chóp S.ABC có đáy là tam giác vuông tại A , biết SA   ABC  và AB  2a, AC  3a,
SA  4a . Tính khoảng cách d từ điểm A đến mặt phẳng  SBC  .

A. d 

2a
.
11

B. d 

6a 29
.
29

C. d 

12a 61
.
61

D. d 

a 43
.
12

Lời giải
https://www.facebook.com/groups/toanvd.vdc

Trang 17


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

Chọn C

NHÓM TOÁN VD – VDC

Vẽ AH  BC . Ta có: SA  BC  SA   ABC   , AH  BC
Nên BC   SAH  , mà BC   SBC  , Do đó  SBC    SAH  .
Lại có  SBC    SAH   SH
Vẽ AK  SH  AK   SBC 
Như vậy d  A ,  SBC   AK

1
1
1
1
1
1
 2
 2

2
2
2
AK
SA
AH
SA
AB
AC 2
1

 4a 

2



1

 2a 

2



1
61
12a 61

 AK 
2
2
61
 3a  144a

Câu 28. Cho hàm số y  f  x  , y  g  x  liên tục trên đoạn  a; b  a  b  . Hình phẳng D giới hạn bởi đồ
thị hai hàm số y  f  x  , y  g  x  và hai đường thẳng x  a, x  b có diện tích là
A. S D   f  x   g  x  dx .

B. S D    f  x   g  x  dx .
a

C. S D    f  x   g  x  dx .

D. S D   f  x   g  x  dx .

b

b

a

a

b

b

a

Lời giải
Chọn A
Câu 29.

Số phức z  5  8i có phần ảo là
A. 5 .
B. 8 .

D. 8i .

C. 8 .
Lời giải

Chọn B
Ta có: z  5  8i nên phần ảo của số phức là 8
Câu 30. Biểu thức
1

A. x 12 .

3

x 4 x  x  0  viết dưới dạng lũy thừa với số mũ hữu tỉ là:
1

B. x 7 .

https://www.facebook.com/groups/toanvd.vdc

5

C. x 4 .
Lời giải

5

D. x 12 .
Trang 18

NHÓM TOÁN VD – VDC




NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

Chọn D
Ta có

3

3

5

5

x 4 x  x 4  x 12

y  f  5  2 x   4 x 2  10 x đồng biến trong các khoảng nào sau đây?
y
5

3

NHÓM TOÁN VD – VDC

Câu 31. Cho hàm số y  f  x  là hàm đa thức bậc 4, có đồ thị hàm số y  f '  x  như hình vẽ. Hàm số

1
O

A.  3; 4  .

1

2

x

3 
C.  ; 2  .
2 
Lời giải

 5
B.  2;  .
 2

 3
D.  0;  .
 2

Chọn B

NHÓM TOÁN VD – VDC

Ta có y '  2 f '  5  2 x   8 x  10  2  f '  5  2 x   2 5  2 x   5 
Ta có y '  0  f '  5  2 x   2  5  2 x   5  0 * . Đặt t  5  2x khi đó

*  f '  t   2t  5  0  f '  t   2t  5 . Từ đồ thị trên ta có:
0  t  1  0  5  2x  1  2  x 

5
2

https://www.facebook.com/groups/toanvd.vdc

Trang 19


NHÓM TOÁN VD – VDC

Câu 32. Cho

hàm

ĐỀ THI THỬ THPTQG – 2018-2019

số

y  f  x

liên

tục

\ 1;0

trên

x  x  1 f   x    x  2  f  x   x  x  1 , x 

thỏa

f 1  2ln 2  1 ,

mãn

\ 1;0 . Biết f  2   a  b ln 3 , với a, b là hai

số hữu tỉ. Tính T  a 2  b .

3
.
16

B. T 

21
.
16

3
.
2
Lời giải

C. T 

NHÓM TOÁN VD – VDC

A. T  

D. T  0 .

Chọn A
Ta có:

x  x  1 f   x    x  2  f  x   x  x  1

 f  x 

x2
x2
x2  2x
x2

. f ( x)  1 
. f  x 
. f ( x) 
x( x  1)
x 1
( x  1) 2
x 1
'

'

 x2

 x2

x2
x2
1 


. f  x  
 
. f  x   dx  
dx    x  1 
dx
x 1
x  1 

 x 1
 x 1
 x 1




x2
x2
. f  x    x  ln x  1  C .
x 1
2

Thay x  1 vào 2 vế ta được:

1
1
. f 1    ln 2  C  f 1  2 ln 2  1  2C  C  1.
2
2

Thay x  2 vào 2 vế ta được:

3
3
4
3 3
. f  2   1  ln 3  f  2    ln 3. Từ đó a  ; b  .
4
4
3
4 4

Vậy T  a 2  b 

Câu 33. Cho hàm số bậc ba y  f  x  có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m
f
thuộc đoạn  0;9 sao cho bất phương trình 2

2

 x  f  x  m

 16.2

f 2  x  f  x  m

4

f  x

 16  0 có nghiệm

x   1;1 ?
y
2

2
-2

-1

O

1

x

-2
y = f(x)

A. 6 .

B. 8 .

C. 5 .
Lời giải

D. 7 .

Chọn A

https://www.facebook.com/groups/toanvd.vdc

Trang 20

NHÓM TOÁN VD – VDC

3
.
16


NHÓM TOÁN VD – VDC

2
2

ĐỀ THI THỬ THPTQG – 2018-2019

f 2  x  f  x  m
2 f  x



. 2

f

2

 16.2

f 2  x  f  x  m

 x  f  x  m



4



 1  16. 2

f

f  x

2

 16  0  2

 x  f  x m

f 2  x  f  x  m





1  0  4

f  x

2

2 f  x



 16.2

 16 . 2

f

2

f 2  x  f  x  m

 x  f  x m



 16  0

1  0

Để bất phương trình 2 f
2

f 2  x  f  x m

2

 x  f  x  m

 16.2

f 2  x  f  x  m

4

f  x

 16  0 có nghiệm x   1;1 thì

 1  0 có nghiệm x   1;1  f 2  x   f  x   m  0 có nghiệm x   1;1

 f 2  x   f  x   m có nghiệm x   1;1
Đặt f  x   t; x   1;1  t   2; 2 

NHÓM TOÁN VD – VDC

f x
Vì x   1;1  f  x    2; 2   4   16  0

Phương trình f 2  x   f  x   m có nghiệm x   1;1 khi và chỉ khi phương trình t 2  t  m có
nghiệm t   2;2 
Xét g  t   t 2  t với t   2;2  . Có g '  t   2t  1; g '  t   0  t 

1
2

Ta có bảng biến thiên của g  t  trên khoảng  2;2 

Vì m   0;9  m  0;5 . Vậy có 6 giá trị của m để bất phương trình có nghiệm thuộc

 1;1 .
3
5
Câu 34. Cho a, b, c, d là các số nguyên dương, a  1; c  1 thoa mãn log a b  ;log c d  và a  c  9 .
2
4
Khi đó b  d bằng
A. 93 .

B. 9 .

C. 13 .
Lời giải

D. 21 .

Chọn A
Ta có:
log a b 

2
2
3
2
 log b a   a  b 3  a  3 b
2
3

https://www.facebook.com/groups/toanvd.vdc

Trang 21

NHÓM TOÁN VD – VDC

Dựa vào bảng biến thiên ta thấy t 2  t  m có nghiệm t   2;2   m  6 .


NHÓM TOÁN VD – VDC
Vì: log c d 

ĐỀ THI THỬ THPTQG – 2018-2019

4
4
5
4
 log d c   c  d 5  c  5 d
4
5



3

2

b 5d

4

9

nguyên dương nên

Vì a, b, c, d

3

3

b5d

2

b ;5 d

4

2

 .

3

b5d

2

9

nguyên dương  3 b , 5 d

nguyên dương

3
5

 3 b  5
b  125
 b  d 1
. Vậy b  d  93 .

 2

2
5
d  32
3
5

d

4


b

d

9


2

Câu 35. Cho hàm số y  x3  8 x 2  8 x có đồ thị  C  và hàm số y  x 2  8  a  x  b (với a, b 

) có

đồ thị  P  . Biết đồ thị hàm số  C  cắt  P  tại các điểm có hoành độ nằm trong đoạn  1;5 .
Khi a đạt giá trị nhỏ nhất thì tích ab bằng
A. 729 .
B. 375 .

C. 225 .
Lời giải

NHÓM TOÁN VD – VDC

Lại có: a  c  9 

D. 384 .

Chọn B
Xét phương trình hoành độ giao điểm của hai đồ thị  C  và  P 

x3  8 x 2  8 x  x 2   8  a  x  b
Khi đó ta có phương trình x3  9 x 2  ax  b  0 * có 3 nghiệm thuộc  1;5 .
Đặt f  x   x3  9 x 2  ax  b .
Ta có f   x   3x 2  18x  a , khi đó để * có các nghiệm thuộc  1;5 thì f   x   0 có nghiệm
thuộc  1;5 .

NHÓM TOÁN VD – VDC

Xét hàm số g  x   3x 2  18 x , 1  x  5 có bảng biến thiên

Khi đó 15  a  27 .
Xét a  15 thì * có nghiệm x  5 nên b  25 .
Thử lại phương trình x3  9 x2  15x  25   x  1 x  5  0 thỏa mãn. Vậy ab  375 .
2

Câu 36. Gọi A là tập các số tự nhiên có 3 chữ số đôi một khác nhau. Lấy ngẫu nhiên từ A ra hai số.
Tính xác suất để lấy được hai số mà các chữ số có mặt ở hai số đó giống nhau.
41
35
41
14
A.
.
B.
.
C.
.
D.
.
5823
5823
7190
1941
Lời giải
Chọn A
Ta có số các số tự nhiên có 3 chữ số đôi một khác nhau là 9.9.8  648 , trong đó có
9.8.7  504 số không chứa chữ số 0 .
https://www.facebook.com/groups/toanvd.vdc

Trang 22


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

2
Khi đó   C648
.

Trường hợp 2: Xét có số tự nhiên có 3 chữ số đôi một khác nhau và chứa chữ số 0 . Khi đó số
cách chọn ra được hai số mà các chữ số có mặt ở hai số đó giống nhau là

1
C144
.C31
.
2

Vậy xác suất để lấy đươc hai số mà các chữ số có mặt giống nhau là
1
1
C504
.C51 C144
.C31

41
2
2
P

2
C648
5823

Câu 37. Cho hàm số y  f  x  liên tục trên
A. I  144 .

NHÓM TOÁN VD – VDC

Trường hợp 1: Xét các số tự nhiên có 3 chữ số đôi một khác nhau và không chứa chữ số 0 .
1
C504
.C15
Khi đó số cách chọn ra được hai số mà các chữ số có mặt ở hai số đó giống nhau là
(vì
2
mỗi số được kể 2 lần).

 x
và f  2   16,  f  x dx  4 . Tính I   xf   dx .
2
0
0
2

C. I  112 .
Lời giải

B. I  12 .

4

D. I  28 .

Chọn C

4

NHÓM TOÁN VD – VDC

u  x
 du  dx



Đặt 
x

x.
 d v  f   2  dx
v  2 f  2 
 
 


4
x
 x
 x
 x

Khi đó I   xf  dx  2 xf    2  f  dx  128  2 f  dx .
20
2
2
2
0
0
0
4

x
Đặt t  , khi đó
2

4


0

4

 x
f  dx  2 f  t dt  2 f  x dx  8 .
2
0
0
2

2

Vậy I  128  2.8  112 .
Câu 38. Cho tứ diện ABCD có DAB  CBD  90º ; AB  a; AC  a 5; ABC  135 . Biết góc giữa hai
mặt phẳng  ABD  ,  BCD  bằng 30 . Thể tích của tứ diện ABCD là
A.

a3
.
2 3

B.

a3
.
2

C.

a3
.
3 2

D.

a3
.
6

Lời giải
Chọn D

https://www.facebook.com/groups/toanvd.vdc

Trang 23


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

NHÓM TOÁN VD – VDC

Dựng DH   ABC  .
 BA  DA
 BA  AH . Tương tự
Ta có 
 BA  DH

 BC  DB
 BC  BH .

 BC  DH

Tam giác AHB có AB  a , ABH  45o  HAB vuông cân tại A  AH  AB  a .
Áp dụng định lý cosin, ta có BC  a 2 .
1
1
2 a2

Vậy S ABC   BA  BC  sin CBA   a  a 2 
.
2
2
2
2

Suy ra

  DBA ,  DBC     HE , HF   EHF

Đặt DH  x , khi đó HE 

Suy ra cos EHF 

ax
a x
2

2

, HF 

NHÓM TOÁN VD – VDC

 HE  DA
 HE   DAB  và HF   DBC  .
Dựng 
 HF  DB

và tam giác HEF vuông tại E .
xa 2
2a 2  x 2

.

HE
3
x 2  2a 2


 xa.
HF
4
2 x 2  2a 2

1
a3
Vậy VABCD   DH  SABC  .
3
6

Câu 39. Trong mặt phẳng với hệ tọa độ Oxy , cho hình
y   2x , x  4 ; hình

 H2 

 H1 

giới hạn bởi các đường y  2 x ,

là tập hợp tất cả các điểm M  x; y  thỏa mãn các điều kiện:

x 2  y 2  16;  x  2  y 2  4;  x  2   y 2  4 . Khi quay  H1  ,  H 2  quanh Ox ta được các
2

2

khối tròn xoay có thể tích lần lượt là V1 , V2 . Khi đó, mệnh đề nào sau đây là đúng?
A. V2  2V1 .

B. V2  V1 .

C. V1  V2  48 .

D. V2  4V1 .

Lời giải
Chọn D
https://www.facebook.com/groups/toanvd.vdc

Trang 24


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

Hình phẳng  H1 
y

4

4

Khi cho  H1  quay quanh trục Ox , ta có V1   



2x



2

NHÓM TOÁN VD – VDC

O

x

dx  16 .

0

Hình phẳng  H 2 
y

O

4

x

4
4
Khi cho  H 2  quay quanh trục Ox , ta có V2  . 43  2. . 23  64 . Vậy V2  4V1.
3
3
Câu 40. Trong không gian với hệ tọa độ Oxyz , cho hai điểm A 1; 2;1 , B  3; 4;0  , mặt phẳng

 P  : ax  by  cz  46  0 . Biết rằng khoảng cách từ

A, B đến mặt phẳng  P  lần lượt bằng 6

và 3 . Giá trị của biểu thức T  a  b  c bằng
A. 3 .
B. 6 .
C. 3 .
D. 6 .
Lời giải
Chọn B
Gọi H , K lần lượt là hình chiếu vuông góc của A, B lên mặt phẳng  P  .
Ta có AB  3, AH  6 , BH  3
Suy ra A, B nằm cùng một phía của mặt phẳng  P 
Lại có 6  AB  BK  AK  AH  6
Suy ra A, B, H thẳng hàng và B là trung điểm của AH

 H  5;6;  1
Vậy mặt phẳng  P  đi qua H  5;6;  1 và có vtpt AB   2; 2;  1 có phương trình
https://www.facebook.com/groups/toanvd.vdc

Trang 25

NHÓM TOÁN VD – VDC

H2


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay

×